We show a weighted version of Fefferman-Phong's inequality and apply it to give an estimate of fundamental solutions, eigenvalue asymptotics and exponential decay of eigenfunctions for certain degenerate elliptic operators of second order with positive potentials.
@article{bwmeta1.element.bwnjournal-article-smv138i2p101bwm, author = {Kazuhiro Kurata and Satoko Sugano}, title = {Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {101-119}, zbl = {0956.35058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv138i2p101bwm} }
Kurata, Kazuhiro; Sugano, Satoko. Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials. Studia Mathematica, Tome 141 (2000) pp. 101-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv138i2p101bwm/
[00000] [CSW] S. Chanillo, J. Strömberg and R. Wheeden, Norm inequalities for potential type operators, Rev. Mat. Iberoamericana 3 (1987), 311-335. | Zbl 0696.31010
[00001] [CW] S. Chanillo and R. L. Wheeden, Existence and estimates of Green's function for degenerate elliptic equations, Ann. Scuola Norm. Sup. Pisa 15 (1988), 309-340. | Zbl 0688.35002
[00002] [CFG] F. Chiarenza, E. Fabes and N. Garofalo, Harnack's inequality for Schrödinger operators and the continuity of solutions, Proc. Amer. Math. Soc. 98 (1986), 415-425. | Zbl 0626.35022
[00003] [CF] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. 7 (1987), 273-279. | Zbl 0717.42023
[00004] [CoF] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. | Zbl 0291.44007
[00005] [Da] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989. | Zbl 0699.35006
[00006] [FJK] E. Fabes, D. Jerison and C. Kenig, The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 3, 151-182. | Zbl 0488.35034
[00007] [FKS] E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116. | Zbl 0498.35042
[00008] [Fe] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. | Zbl 0526.35080
[00009] [GR] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, 1985.
[00010] [Ge] F. Gehring, The -integrability of the partial derivatives of a quasi-conformal mapping, Acta Math. 130 (1973), 265-277. | Zbl 0258.30021
[00011] [Gu] C. Gutiérrez, Harnack's inequality for degenerate Schrödinger operators, Trans. Amer. Math. Soc. 312 (1989), 403-419. | Zbl 0685.35020
[00012] [Hö] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, 1983.
[00013] [Ku1] K. Kurata, Continuity and Harnack's inequality for solutions of elliptic partial differential equations of second order, Indiana Univ. Math. J. 43 (1994), 411-440. | Zbl 0805.35017
[00014] [Ku2] K. Kurata, On doubling properties for non-negative weak solutions of elliptic and parabolic PDE, Israel J. Math., to appear.
[00015] [KS] K. Kurata and S. Sugano, A remark on estimates for uniformly elliptic operators on weighted spaces and Morrey spacs, Math. Nachr., to appear. | Zbl 0939.35036
[00016] [Mu] M. Murata, On construction of Martin boundaries for second order elliptic equations, Publ. Res. Inst. Math. Sci. 26 (1990), 585-627. | Zbl 0726.31009
[00017] [Sh1] Z. Shen, estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546. | Zbl 0818.35021
[00018] [Sh2] Z. Shen, Eigenvalue asymptotics and exponential decay of eigenfunctions for Schrödinger operators with magnetic fields, Trans. Amer. Math. Soc. 348 (1996), 4465-4488. | Zbl 0866.35088
[00019] [Sm] H. F. Smith, Parametrix construction for a class of subelliptic differential operators, Duke Math. J. 63 (1991), 343-354.
[00020] [SW] J. O. Strömberg and R. L. Wheeden, Fractional integrals on weighted and spaces, Trans. Amer. Math. Soc. 287 (1985), 293-321.
[00021] [Su] S. Sugano, Estimates for the operators and with certain nonnegative potentials V, Tokyo J. Math. 21 (1998), 441-452.
[00022] [Ta] K. Tachizawa, Asymptotic distribution of eigenvalues of Schrödinger operators with nonclassical potentials, Tôhoku Math. J. 42 (1990), 381-406. | Zbl 0726.35091
[00023] [Zh] J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph.D. thesis, Princeton Univ., 1993.