Extreme points of the complex binary trilinear ball
Cobos, Fernando ; Kühn, Thomas ; Peetre, Jaak
Studia Mathematica, Tome 141 (2000), p. 81-92 / Harvested from The Polish Digital Mathematics Library

We characterize all the extreme points of the unit ball in the space of trilinear forms on the Hilbert space 2. This answers a question posed by R. Grząślewicz and K. John [7], who solved the corresponding problem for the real Hilbert space 2. As an application we determine the best constant in the inequality between the Hilbert-Schmidt norm and the norm of trilinear forms.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216691
@article{bwmeta1.element.bwnjournal-article-smv138i1p81bwm,
     author = {Fernando Cobos and Thomas K\"uhn and Jaak Peetre},
     title = {Extreme points of the complex binary trilinear ball},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {81-92},
     zbl = {0956.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv138i1p81bwm}
}
Cobos, Fernando; Kühn, Thomas; Peetre, Jaak. Extreme points of the complex binary trilinear ball. Studia Mathematica, Tome 141 (2000) pp. 81-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv138i1p81bwm/

[00000] [1] A. Cayley, On a theory of determinants, Cambridge Philos. Soc. Trans. 8 (1843), 1-16.

[00001] [2] F. Cobos, T. Kühn and J. Peetre, Schatten-von Neumann classes of multilinear forms, Duke Math. J. 65 (1992), 121-156. | Zbl 0779.47016

[00002] [3] F. Cobos, T. Kühn and J. Peetre, On Sp-classes of trilinear forms, J. London Math. Soc. (2) 59 (1999), 1003-1022. | Zbl 0935.47022

[00003] [4] F. Cobos, T. Kühn and J. Peetre, On the structure of bounded trilinear forms, http:/www.maths.lth.se/matematiklu/personal/jaak. | Zbl 1279.47013

[00004] [5] J. A. Dieudonné and J. B. Carrell, Invariant Theory, Old and New, Academic Press, New York and London, 1971. | Zbl 0258.14011

[00005] [6] I. M. Gel'fand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, MA, 1994. | Zbl 0827.14036

[00006] [7] R. Grząślewicz and K. John, Extreme elements of the unit ball of bilinear operators on 22, Arch. Math. (Basel) 50 (1988), 264-269. | Zbl 0653.47024

[00007] [8] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338. | Zbl 0045.06201

[00008] [9] E. Schwartz, Über binäre trilineare Formen, Math. Z. 12 (1922), 18-35. | Zbl 48.0104.03