We deal with weighted spaces and HV(U) of holomorphic functions defined on a balanced open subset U of a Banach space X. We give conditions on the weights to ensure that the weighted spaces of m-homogeneous polynomials constitute a Schauder decomposition for them. As an application, we study their reflexivity. We also study the existence of a predual. Several examples are provided.
@article{bwmeta1.element.bwnjournal-article-smv138i1p1bwm, author = {D. Garc\'\i a and M. Maestre and P. Rueda}, title = {Weighted spaces of holomorphic functions on Banach spaces}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {1-24}, zbl = {0960.46025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv138i1p1bwm} }
García, D.; Maestre, M.; Rueda, P. Weighted spaces of holomorphic functions on Banach spaces. Studia Mathematica, Tome 141 (2000) pp. 1-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv138i1p1bwm/
[00000] [1] R. Alencar, On reflexivity and basis for , Proc. Roy. Irish Acad. 85A (1985), 131-138. | Zbl 0594.46043
[00001] [2] R. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411. | Zbl 0536.46015
[00002] [3] J. M. Ansemil and S. Ponte, An example of quasinormable Fréchet function space which is not a Schwartz space, in: Functional Analysis, Holomorphy and Approximation theory, S. Machado (ed.), Lecture Notes in Math. 843, Springer, 1981, 1-8.
[00003] [4] R. Aron, B. Cole and T. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51-93. | Zbl 0717.46031
[00004] [5] R. Aron, P. Galindo, D. García and M. Maestre, Regularity and algebras of analytic functions in infinite dimensions, Trans. Amer. Math. Soc. 348 (1996), 543-559. | Zbl 0844.46024
[00005] [6] K. D. Bierstedt and J. Bonet, Biduality in Fréchet and (LB)-spaces, in: Progress in Functional Analysis, K. D. Bierstedt et al. (eds.), North-Holland Math. Stud. 170, North-Holland, Amsterdam, 1992, 113-133. | Zbl 0804.46007
[00006] [7] K. D. Bierstedt, J. Bonet and A. Galbis, Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J. 40 (1993), 271-297. | Zbl 0803.46023
[00007] [8] K. D. Bierstedt, J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), 137-168. | Zbl 0934.46027
[00008] [9] K. D. Bierstedt, R. G. Meise and W. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107-160. | Zbl 0599.46026
[00009] [10] K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70-79. | Zbl 0801.46021
[00010] [11] O. Blasco and A. Galbis, On Taylor coefficients of entire functions integrable against exponential weights, preprint, Univ. of Valencia, 1998. | Zbl 0988.46018
[00011] [12] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, Berlin, 1984.
[00012] [13] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, Amsterdam, 1981. | Zbl 0484.46044
[00013] [14] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monogr. Math., London, 1999. | Zbl 1034.46504
[00014] [15] S. Dineen, Quasinormable spaces of holomorphic functions, Note Mat. 13 (1993), 155-195. | Zbl 0838.46036
[00015] [16] P. Galindo, D. García and M. Maestre, Holomorphic mappings of bounded type on (DF)-spaces, in: Progress in Functional Analysis, K. D. Bierstedt et al. (eds.), North-Holland Math. Stud. 170, North-Holland, Amsterdam, 1992, 135-148. | Zbl 0795.46035
[00016] [17] P. Galindo, D. García and M. Maestre, Holomorphic mappings of bounded type, J. Math. Anal. Appl. 166 (1992), 236-246. | Zbl 0806.46047
[00017] [18] P. Galindo, M. Maestre and P. Rueda, Biduality in spaces of holomorphic functions, Math. Scand., to appear. | Zbl 0968.46026
[00018] [19] A. Grothendieck, Sur les espaces (F) et(DF), Summa Brasil. Math. 3 (1954), no. 6, 57-122.
[00019] [20] N. J. Kalton, Schauder decompositions in locally convex spaces, Proc. Cambridge Philos. Soc. 68 (1970), 377-392. | Zbl 0196.13505
[00020] [21] G. Köthe, Topological Vector Spaces I, Grundlehren Math. Wiss. 159, Springer, New York, 1969. | Zbl 0179.17001
[00021] [22] W. Lusky, On the Fourier series of unbounded harmonic functions, preprint, Univ. Paderborn, 1998.
[00022] [23] M. Matos, On holomorphy in Banach spaces and absolute convergence of Fourier series, Portugal. Math. 45 (1988), 429-450. | Zbl 0663.46041
[00023] [24] J. Mujica, Linearization of bounded holomorphic mappings on Banach spaces, Trans. Amer. Math. Soc. 324 (1991), 867-887. | Zbl 0747.46038
[00024] [25] J. Mujica, Linearization of holomorphic mappings of bounded type, in: Progress in Functional Analysis, K. D. Bierstedt et al. (eds.), North-Holland Math. Stud. 170, North-Holland, Amsterdam, 1992, 149-162. | Zbl 0795.46036
[00025] [26] G. Pólya and G. Szegő, Problems and Theorems in Analysis I, 4th ed., Springer, New York, 1970. | Zbl 0201.38102
[00026] [27] A. Prieto, The bidual of spaces of holomorphic functions in infinitely many variables, Proc. Roy. Irish Acad. 92A (1992), 1-8. | Zbl 0741.46016
[00027] [28] L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280. | Zbl 0197.39001
[00028] [29] P. Rueda, On the Banach-Dieudonné theorem for spaces of holomorphic functions, Quaestiones Math. 19 (1996), 341-352. | Zbl 0858.46036
[00029] [30] R. Ryan, Application of topological tensor products to infinite dimensional holomorphy, Ph.D. thesis, Trinity College, Dublin, 1980.
[00030] [31] R. Ryan, Holomorphic mappings on , Trans. Amer. Math. Soc. 302 (1987), 797-811. | Zbl 0637.46045
[00031] [32] K. R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Belmont, 1981. | Zbl 0454.26001
[00032] [33] W. H. Summer, Dual spaces of weighted spaces, Trans. Amer. Math. Soc. 151 (1970), 323-333. | Zbl 0203.12401
[00033] [34] D. L. Williams, Some Banach spaces of entire functions, Ph.D. thesis, Univ. of Michigan, 1967.