Stochastic partial differential equations on are considered. The noise is supposed to be a spatially homogeneous Wiener process. Using the theory of stochastic integration in Banach spaces we show the existence of a Markovian solution in a certain weighted -space. Then we obtain the existence of a space continuous solution by means of the Da Prato, Kwapień and Zabczyk factorization identity for stochastic convolutions.
@article{bwmeta1.element.bwnjournal-article-smv137i3p261bwm, author = {Zdzis\l aw Brze\'zniak and Szymon Peszat}, title = {Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {261-299}, zbl = {0944.60075}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv137i3p261bwm} }
Brzeźniak, Zdzisław; Peszat, Szymon. Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process. Studia Mathematica, Tome 133 (1999) pp. 261-299. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv137i3p261bwm/
[00000] [1] V. Bally, I. Gyöngy and E. Pardoux, White noise driven parabolic SPDE'S with measurable drift, J. Funct. Anal. 120 (1994), 484-510. | Zbl 0801.60049
[00001] [2] P. Baxendale, Gaussian measures on function spaces, Amer. J. Math. 98 (1976), 891-952. | Zbl 0384.28011
[00002] [3] B. Beauzamy, Introduction to Banach Spaces and their Geometry, North-Holland, Amsterdam, 1985.
[00003] [4] Z. Brzeźniak, Stochastic partial differential equations in M-type 2 Banach spaces, Potential Anal. 4 (1995), 1-45. | Zbl 0831.35161
[00004] [5] Z. Brzeźniak, On stochastic convolutions in Banach spaces and applications, Stochastics Stochastics Rep. 61 (1997), 245-295. | Zbl 0891.60056
[00005] [6] Z. Brzeźniak and D. Gątarek, Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces, Stochastic Process. Appl., to appear. | Zbl 0996.60074
[00006] [7] Z. Brzeźniak and S. Peszat, Stochastic two dimensional Euler equations, Preprint 2, School of Mathematics, University of Hull, Hull, 1999. | Zbl 1032.60055
[00007] [8] D. L. Burkholder, Martingales and Fourier analysis in Banach spaces, in: Probability and Analysis (Varenna, 1985), Lecture Notes in Math. 1206, Springer, Berlin, 1986, 61-108.
[00008] [9] M. Capiński and S. Peszat, On the existence of a solution to stochastic Navier-Stokes equations, Nonlinear Anal., to appear.
[00009] [10] G. Da Prato, S. Kwapień and J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics 23 (1987), 1-23. | Zbl 0634.60053
[00010] [11] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992. | Zbl 0761.60052
[00011] [12] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge Univ. Press, Cambridge, 1996. | Zbl 0849.60052
[00012] [13] E. B. Davies, One-Parameter Semigroups, Academic Press, London, 1980. | Zbl 0457.47030
[00013] [14] D. A. Dawson and H. Salehi, Spatially homogeneous random evolutions, J. Multivariate Anal. 10 (1980), 141-180. | Zbl 0439.60051
[00014] [15] E. Dettweiler, Stochastic integration relative to Brownian motion on a general Banach space, Doǧa Mat. 15 (1991), 6-44. | Zbl 0970.60517
[00015] [16] C. Donati-Martin and E. Pardoux, White noise driven SPDE'S with reflection, Probab. Theory Related Fields 95 (1993), 1-24. | Zbl 0794.60059
[00016] [17] S. D. Eidel'man, Parabolic Systems, North-Holland, Amsterdam, 1969.
[00017] [18] T. Funaki, Regularity properties for stochastic partial differential equations of parabolic type, Osaka J. Math. 28 (1991), 495-516. | Zbl 0770.60062
[00018] [19] N. Yu. Goncharuk and P. Kotelenez, Fractional step method for stochastic evolution equations, Stochastic Process. Appl. 73 (1998), 1-45. | Zbl 0942.60057
[00019] [20] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer, Berlin, 1981. | Zbl 0456.35001
[00020] [21] K. Itô, Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces, SIAM, Philadelphia, 1984.
[00021] [22] P. Kotelenez, Existence, uniqueness and smoothness for a class of function valued stochastic partial differential equations, Stochastics Stochastics Rep. 41 (1992), 177-199. | Zbl 0766.60078
[00022] [23] P. Kotelenez, Comparison methods for a class of function valued stochastic differential equations, Probab. Theory Related Fields 93 (1992), 1-19. | Zbl 0767.60053
[00023] [24] H. H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math. 463, Springer, Berlin, 1975. | Zbl 0306.28010
[00024] [25] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs 23, Amer. Math. Soc., Providence, RI, 1968.
[00025] [26] R. Manthey and T. Zausinger, Stochastic evolution equations in , Stochastics Stochastics Rep. 66 (1999), 37-85. | Zbl 0926.60051
[00026] [27] M. Marcus and G. Pisier, Random Fourier Series, with Applications to Harmonic Analysis, Princeton Univ. Press, Princeton, 1981. | Zbl 0474.43004
[00027] [28] A. L. Neidhardt, Stochastic integrals in 2-uniformly smooth Banach spaces, Ph.D. Thesis, University of Wisconsin, 1978.
[00028] [29] J. Nobel, Evolution equation with Gaussian potential, Nonlinear Anal. 28 (1997), 103-135.
[00029] [30] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
[00030] [31] S. Peszat, Existence and uniqueness of the solution for stochastic equations on Banach spaces, Stochastics Stochastics Rep. 55 (1995), 167-193. | Zbl 0886.60064
[00031] [32] S. Peszat and J. Seidler, Maximal inequalities and space-time regularity of stochastic convolutions, Math. Bohem. 123 (1998), 7-32. | Zbl 0903.60047
[00032] [33] S. Peszat and J. Zabczyk, Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab. 23 (1995), 157-172. | Zbl 0831.60083
[00033] [34] S. Peszat and J. Zabczyk, Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Process. Appl. 72 (1997), 187-204. | Zbl 0943.60048
[00034] [35] S. Peszat and J. Zabczyk, Nonlinear stochastic wave and heat equations, Probab. Theory Related Fields, to appear. | Zbl 0959.60044
[00035] [36] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1976), 326-350. | Zbl 0344.46030
[00036] [37] E. Sinestrari, Accretive differential operators, Boll. Un. Mat. Ital. A 13 (1976), 19-31. | Zbl 0343.35016
[00037] [38] G. Tessitore and J. Zabczyk, Invariant measures for stochastic heat equations, Probab. Math. Statist. 18 (1999), 271-287. | Zbl 0986.60057
[00038] [39] G. Tessitore and J. Zabczyk, Strict positivity for stochastic heat equations, Stochastic Process. Appl. 77 (1998), 83-98. | Zbl 0933.60071
[00039] [40] N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, Probability Distributions on Banach Spaces, Reidel, Dordrecht, 1987.
[00040] [41] J. B. Walsh, An introduction to stochastic partial differential equations, in: École d'été de probabilités de Saint-Flour XIV-1984, Lecture Notes in Math. 1180, Springer, Berlin, 1986, 265-439.