Fourier analysis, Schur multipliers on Sp and non-commutative Λ(p)-sets
Harcharras, Asma
Studia Mathematica, Tome 133 (1999), p. 203-260 / Harvested from The Polish Digital Mathematics Library

This work deals with various questions concerning Fourier multipliers on Lp, Schur multipliers on the Schatten class Sp as well as their completely bounded versions when Lp and Sp are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the group ℤ.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216685
@article{bwmeta1.element.bwnjournal-article-smv137i3p203bwm,
     author = {Asma Harcharras},
     title = {Fourier analysis, Schur multipliers on $S^p$ and non-commutative $\Lambda$(p)-sets},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {203-260},
     zbl = {0948.43002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv137i3p203bwm}
}
Harcharras, Asma. Fourier analysis, Schur multipliers on $S^p$ and non-commutative Λ(p)-sets. Studia Mathematica, Tome 133 (1999) pp. 203-260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv137i3p203bwm/

[00000] [1] M. Anoussis and E. Katsoulis, Complemented subspaces of Cp spaces and CSL algebras, J. London Math. Soc. 45 (1992), 301-313. | Zbl 0781.47037

[00001] [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, New York, 1976. | Zbl 0344.46071

[00002] [3] G. Bennett, Some ideals of operators on Hilbert space, Studia Math. 55 (1976), 27-40. | Zbl 0338.47013

[00003] [4] D. Blecher and V. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), 262-292. | Zbl 0786.46056

[00004] [5] A. Bonami, Ensembles Λ(p) dans le dual de D, Ann. Inst. Fourier (Grenoble) 18 (1968), no. 2, 193-204.

[00005] [6] A. Bonami, Étude des coefficients de Fourier des fonctions de Lp(G), ibid. 20 (1970), no. 2, 335-402. | Zbl 0195.42501

[00006] [7] J. Bourgain, Some remarks on Banach spaces in which martingale differences are unconditional, Ark. Mat. 21 (1983), 163-168. | Zbl 0533.46008

[00007] [8] J. Bourgain, Vector valued singular integrals and the H1-BMO duality, in: Probability Theory and Harmonic Analysis, J. A. Chao and W. Woyczynski (eds.), Marcel Dekker, New York, 1986, 1-19.

[00008] [9] J. Bourgain, Bounded orthogonal systems and the Λ(p)-set problem, Acta Math. 162 (1989), 227-245. | Zbl 0674.43004

[00009] [10] M. Bożejko, The existence of Λ(p) sets in discrete noncommutative groups, Boll. Un. Mat. Ital. (4) 8 (1973), 579-582. | Zbl 0279.43010

[00010] [11] M. Bożejko, A remark to my paper (The existence of Λ(p) sets in discrete noncommutative groups), ibid. 11 (1975), 198-199. | Zbl 0304.43009

[00011] [12] M. Bożejko, On Λ(p) sets with minimal constant in discrete noncommutative groups, Proc. Amer. Math. Soc. (2) 51 (1975), 407-412.

[00012] [13] M. Bożejko, Remarks on the Herz-Schur multipliers on free groups, Math. Ann. 258 (1981), 11-15. | Zbl 0483.43004

[00013] [14] M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A (6) 3 (1984), 297-302. | Zbl 0564.43004

[00014] [15] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, 1995. | Zbl 0855.47016

[00015] [16] J. Dixmier, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France 81 (1953), 9-39. | Zbl 0050.11501

[00016] [17] E. Effros and Z. Ruan, A new apprach to operator spaces, Canad. Math. Bull. 34 (1991), 329-337. | Zbl 0769.46037

[00017] [18] J. Erdos, Completely distributive CSL algebras with no complements in Sp, Proc. Amer. Math. Soc. 124 (1996), 1127-1131. | Zbl 0856.47027

[00018] [19] U. Haagerup and G. Pisier, Bounded linear operators between C*-algebras, Duke Math. J. 71 (1993), 889-925. | Zbl 0803.46064

[00019] [20] H. Kosaki, Applications of the complex interpolation method to a von Neumann algebra: Non-commutative Lp-spaces, J. Funct. Anal. 56 (1984), 29-78. | Zbl 0604.46063

[00020] [21] S. Kwapień, On operators factorizable through Lp space, Bull. Soc. Math. France Mém. 31-32 (1972), 215-225. | Zbl 0246.47040

[00021] [22] S. Kwapień and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43-68. | Zbl 0189.43505

[00022] [23] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Sequence Spaces, Springer, Berlin, 1976. | Zbl 0347.46025

[00023] [24] J. López and K. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975.

[00024] [25] F. Lust-Piquard, Opérateurs de Hankel 1-sommant de l(N) dans l(N) et multiplicateurs de H1(T), C. R. Acad. Sci. Paris Sér. I 299 (1984), 915-918. | Zbl 0562.42007

[00025] [26] F. Lust-Piquard, Inégalités de Khintchine dans Cp (1 < p < ∞), ibid. 303 (1986), 289-292.

[00026] [27] F. Lust-Piquard and G. Pisier, Non-commutative Khintchine and Paley inequalities, Ark. Mat. 29 (1991), 241-260. | Zbl 0755.47029

[00027] [28] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116. | Zbl 0292.46030

[00028] [29] V. Peller, Hankel operators of class ɞp and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Mat. Sb. 113 (1980), 538-551 (in Russian); English transl.: Math. USSR-Sb. 41 (1982), 443-479. | Zbl 0458.47022

[00029] [30] V. Peller, Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class ɞp, Integral Equations Operator Theory 5 (1982), 244-272. | Zbl 0478.47014

[00030] [31] G. Pisier, Some results on Banach spaces without local unconditional structure, Compositio Math. 37 (1978), 3-19. | Zbl 0381.46010

[00031] [32] G. Pisier, Similarity Problems and Completely Bounded Maps, Lecture Notes in Math. 1618, Springer, 1995.

[00032] [33] G. Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 585 (1996). | Zbl 0932.46046

[00033] [34] G. Pisier, Non-commutative vector valued Lp-spaces and completely p-summing maps, Astérisque 247 (1998).

[00034] [35] G. Pisier and Q. Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), 667-698. | Zbl 0898.46056

[00035] [36] Z. Ruan, Subspaces of C*-algebras, J. Funct. Anal. 76 (1988), 217-230.

[00036] [37] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-228. | Zbl 0091.05802

[00037] [38] I. Segal, A non-commutative extension of abstract integration, Ann. of Math. 37 (1953), 401-457. | Zbl 0051.34201

[00038] [39] J. Stafney, The spectrum of an operator on an interpolation space, Trans. Amer. Math. Soc. 144 (1969), 333-349. | Zbl 0225.46034

[00039] [40] J. Stafney, Analytic interpolation of certain multiplier spaces, Pacific J. Math. 32 (1970), 241-248. | Zbl 0187.37702

[00040] [41] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971. | Zbl 0232.42007

[00041] [42] M. Talagrand, Sections of smooth convex bodies via majorizing measures, Acta Math. 175 (1995), 273-306. | Zbl 0917.46006

[00042] [43] N. Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace classes Sp(1p<), Studia Math. 50 (1974), 163-182. | Zbl 0282.46016

[00043] [44] N. Varopoulos, Tensor algebras over discrete spaces, J. Funct. Anal. 3 (1969), 321-335. | Zbl 0183.14502

[00044] [45] M. Zafran, Interpolation of multiplier spaces, Amer. J. Math. 105 (1983), 1405-1416. | Zbl 0544.42010

[00045] [46] A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189-201. | Zbl 0278.42005