This work deals with various questions concerning Fourier multipliers on , Schur multipliers on the Schatten class as well as their completely bounded versions when and are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the group ℤ.
@article{bwmeta1.element.bwnjournal-article-smv137i3p203bwm, author = {Asma Harcharras}, title = {Fourier analysis, Schur multipliers on $S^p$ and non-commutative $\Lambda$(p)-sets}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {203-260}, zbl = {0948.43002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv137i3p203bwm} }
Harcharras, Asma. Fourier analysis, Schur multipliers on $S^p$ and non-commutative Λ(p)-sets. Studia Mathematica, Tome 133 (1999) pp. 203-260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv137i3p203bwm/
[00000] [1] M. Anoussis and E. Katsoulis, Complemented subspaces of spaces and CSL algebras, J. London Math. Soc. 45 (1992), 301-313. | Zbl 0781.47037
[00001] [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, New York, 1976. | Zbl 0344.46071
[00002] [3] G. Bennett, Some ideals of operators on Hilbert space, Studia Math. 55 (1976), 27-40. | Zbl 0338.47013
[00003] [4] D. Blecher and V. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), 262-292. | Zbl 0786.46056
[00004] [5] A. Bonami, Ensembles Λ(p) dans le dual de , Ann. Inst. Fourier (Grenoble) 18 (1968), no. 2, 193-204.
[00005] [6] A. Bonami, Étude des coefficients de Fourier des fonctions de , ibid. 20 (1970), no. 2, 335-402. | Zbl 0195.42501
[00006] [7] J. Bourgain, Some remarks on Banach spaces in which martingale differences are unconditional, Ark. Mat. 21 (1983), 163-168. | Zbl 0533.46008
[00007] [8] J. Bourgain, Vector valued singular integrals and the -BMO duality, in: Probability Theory and Harmonic Analysis, J. A. Chao and W. Woyczynski (eds.), Marcel Dekker, New York, 1986, 1-19.
[00008] [9] J. Bourgain, Bounded orthogonal systems and the Λ(p)-set problem, Acta Math. 162 (1989), 227-245. | Zbl 0674.43004
[00009] [10] M. Bożejko, The existence of Λ(p) sets in discrete noncommutative groups, Boll. Un. Mat. Ital. (4) 8 (1973), 579-582. | Zbl 0279.43010
[00010] [11] M. Bożejko, A remark to my paper (The existence of Λ(p) sets in discrete noncommutative groups), ibid. 11 (1975), 198-199. | Zbl 0304.43009
[00011] [12] M. Bożejko, On Λ(p) sets with minimal constant in discrete noncommutative groups, Proc. Amer. Math. Soc. (2) 51 (1975), 407-412.
[00012] [13] M. Bożejko, Remarks on the Herz-Schur multipliers on free groups, Math. Ann. 258 (1981), 11-15. | Zbl 0483.43004
[00013] [14] M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A (6) 3 (1984), 297-302. | Zbl 0564.43004
[00014] [15] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, 1995. | Zbl 0855.47016
[00015] [16] J. Dixmier, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France 81 (1953), 9-39. | Zbl 0050.11501
[00016] [17] E. Effros and Z. Ruan, A new apprach to operator spaces, Canad. Math. Bull. 34 (1991), 329-337. | Zbl 0769.46037
[00017] [18] J. Erdos, Completely distributive CSL algebras with no complements in , Proc. Amer. Math. Soc. 124 (1996), 1127-1131. | Zbl 0856.47027
[00018] [19] U. Haagerup and G. Pisier, Bounded linear operators between -algebras, Duke Math. J. 71 (1993), 889-925. | Zbl 0803.46064
[00019] [20] H. Kosaki, Applications of the complex interpolation method to a von Neumann algebra: Non-commutative -spaces, J. Funct. Anal. 56 (1984), 29-78. | Zbl 0604.46063
[00020] [21] S. Kwapień, On operators factorizable through space, Bull. Soc. Math. France Mém. 31-32 (1972), 215-225. | Zbl 0246.47040
[00021] [22] S. Kwapień and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43-68. | Zbl 0189.43505
[00022] [23] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Sequence Spaces, Springer, Berlin, 1976. | Zbl 0347.46025
[00023] [24] J. López and K. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975.
[00024] [25] F. Lust-Piquard, Opérateurs de Hankel 1-sommant de l(N) dans l(N) et multiplicateurs de , C. R. Acad. Sci. Paris Sér. I 299 (1984), 915-918. | Zbl 0562.42007
[00025] [26] F. Lust-Piquard, Inégalités de Khintchine dans (1 < p < ∞), ibid. 303 (1986), 289-292.
[00026] [27] F. Lust-Piquard and G. Pisier, Non-commutative Khintchine and Paley inequalities, Ark. Mat. 29 (1991), 241-260. | Zbl 0755.47029
[00027] [28] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116. | Zbl 0292.46030
[00028] [29] V. Peller, Hankel operators of class and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Mat. Sb. 113 (1980), 538-551 (in Russian); English transl.: Math. USSR-Sb. 41 (1982), 443-479. | Zbl 0458.47022
[00029] [30] V. Peller, Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class , Integral Equations Operator Theory 5 (1982), 244-272. | Zbl 0478.47014
[00030] [31] G. Pisier, Some results on Banach spaces without local unconditional structure, Compositio Math. 37 (1978), 3-19. | Zbl 0381.46010
[00031] [32] G. Pisier, Similarity Problems and Completely Bounded Maps, Lecture Notes in Math. 1618, Springer, 1995.
[00032] [33] G. Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 585 (1996). | Zbl 0932.46046
[00033] [34] G. Pisier, Non-commutative vector valued -spaces and completely p-summing maps, Astérisque 247 (1998).
[00034] [35] G. Pisier and Q. Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), 667-698. | Zbl 0898.46056
[00035] [36] Z. Ruan, Subspaces of -algebras, J. Funct. Anal. 76 (1988), 217-230.
[00036] [37] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-228. | Zbl 0091.05802
[00037] [38] I. Segal, A non-commutative extension of abstract integration, Ann. of Math. 37 (1953), 401-457. | Zbl 0051.34201
[00038] [39] J. Stafney, The spectrum of an operator on an interpolation space, Trans. Amer. Math. Soc. 144 (1969), 333-349. | Zbl 0225.46034
[00039] [40] J. Stafney, Analytic interpolation of certain multiplier spaces, Pacific J. Math. 32 (1970), 241-248. | Zbl 0187.37702
[00040] [41] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971. | Zbl 0232.42007
[00041] [42] M. Talagrand, Sections of smooth convex bodies via majorizing measures, Acta Math. 175 (1995), 273-306. | Zbl 0917.46006
[00042] [43] N. Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace classes , Studia Math. 50 (1974), 163-182. | Zbl 0282.46016
[00043] [44] N. Varopoulos, Tensor algebras over discrete spaces, J. Funct. Anal. 3 (1969), 321-335. | Zbl 0183.14502
[00044] [45] M. Zafran, Interpolation of multiplier spaces, Amer. J. Math. 105 (1983), 1405-1416. | Zbl 0544.42010
[00045] [46] A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189-201. | Zbl 0278.42005