For a wide class of weights we find the approximative point spectrum and the essential spectrum of the pointwise multiplication operator , , on the weighted Banach spaces of analytic functions on the disc with the sup-norm. Thus we characterize when is Fredholm or is an into isomorphism. We also study cyclic phenomena for the adjoint map .
@article{bwmeta1.element.bwnjournal-article-smv137i2p177bwm, author = {J. Bonet and P. Doma\'nski and M. Lindstr\"om}, title = {Pointwise multiplication operators on weighted Banach spaces of analytic functions}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {177-194}, zbl = {0957.46018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv137i2p177bwm} }
Bonet, J.; Domański, P.; Lindström, M. Pointwise multiplication operators on weighted Banach spaces of analytic functions. Studia Mathematica, Tome 133 (1999) pp. 177-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv137i2p177bwm/
[00000] [A] S. Axler, Multiplication operators on Bergman spaces, J. Reine Angew. Math. 336 (1982), 26-44. | Zbl 0484.30033
[00001] [BO] B. Berndtsson and J. Ortega-Cerdà, On interpolation and sampling in Hilbert spaces of analytic functions, ibid. 464 (1995), 109-128. | Zbl 0823.30023
[00002] [BBT] K. D. Bierstedt, J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), 70-79. | Zbl 0934.46027
[00003] [BS] K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70-79. | Zbl 0801.46021
[00004] [BDL] J. Bonet, P. Domański and M. Lindström, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42 (1999), 139-148. | Zbl 0939.47020
[00005] [BDLT] J. Bonet, P. Domański, M. Lindström and J. Taskinen, Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. 64 (1998), 101-118. | Zbl 0912.47014
[00006] [B] P. S. Bourdon, Invariant manifolds of hypercyclic vectors, Proc. Amer. Math. Soc. 118 (1993), 845-847. | Zbl 0809.47005
[00007] [ChD] M. D. Choi and C. Davis, The spectral mapping theorem for joint approximative point spectrum, Bull. Amer. Math. Soc. 80 (1974), 317-321. | Zbl 0276.47001
[00008] [C] J. B. Conway, A Course in Functional Analysis, Springer, Berlin, 1990. | Zbl 0706.46003
[00009] [DL] P. Domański and M. Lindström, Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions, preprint, 1998.
[00010] [G] J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981. | Zbl 0469.30024
[00011] [GS] G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifold, J. Funct. Anal. 98 (1991), 229-269. | Zbl 0732.47016
[00012] [Go] P. Gorkin, Functions not vanishing on trivial Gleason parts of Douglas algebras, Proc. Amer. Math. Soc. 104 (1988), 1086-1090. | Zbl 0694.46035
[00013] [H] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111. | Zbl 0192.48302
[00014] [KL] A. Kerr-Lawson, Some lemmas on interpolating Blaschke products and a correction, Canad. J. Math. 21 (1969), 531-534. | Zbl 0206.08702
[00015] [L1] W. Lusky, On the structure of and , Math. Nachr. 159 (1992), 279-289.
[00016] [L2] W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. (2) 51 (1995), 309-320. | Zbl 0823.46025
[00017] [MS] G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), 595-611. | Zbl 0439.47022
[00018] [N] A. Nicolau, Finite products of interpolating Blaschke products, J. London Math. Soc. 50 (1994), 520-531. | Zbl 0819.30019
[00019] [RS] L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280. | Zbl 0197.39001
[00020] [R1] W. Rudin, Functional Analysis, McGraw-Hill, 1974.
[00021] [R2] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1974.
[00022] [S] K. Seip, Beurling type density theorems in the unit disk, Invent. Math. 113 (1993), 21-39. | Zbl 0789.30025
[00023] [S1] K. Seip, On Korenblum’s density condition for the zero sequences of , J. Anal. Math. 67 (1995), 307-322. | Zbl 0845.30014
[00024] [S2] K. Seip, Developments from nonharmonic Fourier series, in: Proc. ICM 1998, Vol. II, 713-722. | Zbl 0968.42019
[00025] [Sh] J. O. Shapiro, Composition Operators and Classical Function Theory, Springer, 1993.
[00026] [SW] A. L. Shields and D. L. Williams, Bounded projections and the growth of harmonic conjugates in the disk, Michigan Math. J. 29 (1982), 3-25.
[00027] [SZ] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148. | Zbl 0306.47014
[00028] [V] D. Vukotić, Pointwise multiplication operators between Bergman spaces on simply connected domains, Indiana Univ. Math. J., to appear. | Zbl 0937.47034
[00029] [Z] W. Żelazko, An axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249-261. | Zbl 0426.47002