H functional calculus in real interpolation spaces
Dore, Giovanni
Studia Mathematica, Tome 133 (1999), p. 161-167 / Harvested from The Polish Digital Mathematics Library

Let A be a linear closed densely defined operator in a complex Banach space X. If A is of type ω (i.e. the spectrum of A is contained in a sector of angle 2ω, symmetric around the real positive axis, and λ(λI-A)-1 is bounded outside every larger sector) and has a bounded inverse, then A has a bounded H functional calculus in the real interpolation spaces between X and the domain of the operator itself.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216681
@article{bwmeta1.element.bwnjournal-article-smv137i2p161bwm,
     author = {Giovanni Dore},
     title = {$H^$\infty$$ functional calculus in real interpolation spaces},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {161-167},
     zbl = {0957.47016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv137i2p161bwm}
}
Dore, Giovanni. $H^∞$ functional calculus in real interpolation spaces. Studia Mathematica, Tome 133 (1999) pp. 161-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv137i2p161bwm/

[00000] [1] K. N. Boyadzhiev and R. J. deLaubenfels, H functional calculus for perturbations of generators of holomorphic semigroups, Houston J. Math. 17 (1991), 131-147. | Zbl 0738.47018

[00001] [2] K. N. Boyadzhiev and R. J. deLaubenfels, Semigroups and resolvents of bounded variation, imaginary powers and H functional calculus, Semigroup Forum 45 (1992), 372-384. | Zbl 0779.47036

[00002] [3] M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded H functional calculus, J. Austral. Math. Soc. Ser. A 60 (1996), 51-89. | Zbl 0853.47010

[00003] [4] G. Dore and A. Venni, Some results about complex powers of closed operators, J. Math. Anal. Appl. 149 (1990), 124-136. | Zbl 0712.47003

[00004] [5] R. deLaubenfels, A holomorphic functional calculus for unbounded operators, Houston J. Math. 13 (1987), 545-548. | Zbl 0653.47008

[00005] [6] R. deLaubenfels, Unbounded holomorphic functional calculus and abstract Cauchy problems for operators with polynomially bounded resolvents, J. Funct. Anal. 114 (1993), 348-394. | Zbl 0785.47018

[00006] [7] A. McIntosh, Operators which have an H functional calculus, in: Miniconference on Operator Theory and Partial Differential Equations (Macquarie University, Ryde, N.S.W., September 8-10, 1986), B. Jefferies, A. McIntosh and W. Ricker (eds.), Proc. Centre Math. Anal. Austral. Nat. Univ. 14, Austral. Nat. Univ., Canberra, 1986, 210-231.

[00007] [8] A. McIntosh and A. Yagi, Operators of type ω without a bounded H functional calculus, in: Miniconference on Operators in Analysis (Macquarie University, Sydney, N.S.W., September 25-27, 1989), I. Doust, B. Jefferies, C. Li and A. McIntosh (eds.), Proc. Centre Math. Anal. Austral. Nat. Univ. 24, Austral. Nat. Univ., Canberra, 1989, 159-172.

[00008] [9] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.