Let A be a linear closed densely defined operator in a complex Banach space X. If A is of type ω (i.e. the spectrum of A is contained in a sector of angle 2ω, symmetric around the real positive axis, and is bounded outside every larger sector) and has a bounded inverse, then A has a bounded functional calculus in the real interpolation spaces between X and the domain of the operator itself.
@article{bwmeta1.element.bwnjournal-article-smv137i2p161bwm, author = {Giovanni Dore}, title = {$H^$\infty$$ functional calculus in real interpolation spaces}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {161-167}, zbl = {0957.47016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv137i2p161bwm} }
Dore, Giovanni. $H^∞$ functional calculus in real interpolation spaces. Studia Mathematica, Tome 133 (1999) pp. 161-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv137i2p161bwm/
[00000] [1] K. N. Boyadzhiev and R. J. deLaubenfels, functional calculus for perturbations of generators of holomorphic semigroups, Houston J. Math. 17 (1991), 131-147. | Zbl 0738.47018
[00001] [2] K. N. Boyadzhiev and R. J. deLaubenfels, Semigroups and resolvents of bounded variation, imaginary powers and functional calculus, Semigroup Forum 45 (1992), 372-384. | Zbl 0779.47036
[00002] [3] M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded functional calculus, J. Austral. Math. Soc. Ser. A 60 (1996), 51-89. | Zbl 0853.47010
[00003] [4] G. Dore and A. Venni, Some results about complex powers of closed operators, J. Math. Anal. Appl. 149 (1990), 124-136. | Zbl 0712.47003
[00004] [5] R. deLaubenfels, A holomorphic functional calculus for unbounded operators, Houston J. Math. 13 (1987), 545-548. | Zbl 0653.47008
[00005] [6] R. deLaubenfels, Unbounded holomorphic functional calculus and abstract Cauchy problems for operators with polynomially bounded resolvents, J. Funct. Anal. 114 (1993), 348-394. | Zbl 0785.47018
[00006] [7] A. McIntosh, Operators which have an functional calculus, in: Miniconference on Operator Theory and Partial Differential Equations (Macquarie University, Ryde, N.S.W., September 8-10, 1986), B. Jefferies, A. McIntosh and W. Ricker (eds.), Proc. Centre Math. Anal. Austral. Nat. Univ. 14, Austral. Nat. Univ., Canberra, 1986, 210-231.
[00007] [8] A. McIntosh and A. Yagi, Operators of type ω without a bounded functional calculus, in: Miniconference on Operators in Analysis (Macquarie University, Sydney, N.S.W., September 25-27, 1989), I. Doust, B. Jefferies, C. Li and A. McIntosh (eds.), Proc. Centre Math. Anal. Austral. Nat. Univ. 24, Austral. Nat. Univ., Canberra, 1989, 159-172.
[00008] [9] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.