The density property for JB*-triples
Dineen, Seán ; Mackey, Michael ; Mellon, Pauline
Studia Mathematica, Tome 133 (1999), p. 143-160 / Harvested from The Polish Digital Mathematics Library

We obtain conditions on a JB*-algebra X so that the canonical embedding of X into its associated quasi-invertible manifold has dense range. We prove that if a JB* has this density property then the quasi-invertible manifold is homogeneous for biholomorphic mappings. Explicit formulae for the biholomorphic mappings are also given.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216680
@article{bwmeta1.element.bwnjournal-article-smv137i2p143bwm,
     author = {Se\'an Dineen and Michael Mackey and Pauline Mellon},
     title = {The density property for JB*-triples},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {143-160},
     zbl = {0957.17032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv137i2p143bwm}
}
Dineen, Seán; Mackey, Michael; Mellon, Pauline. The density property for JB*-triples. Studia Mathematica, Tome 133 (1999) pp. 143-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv137i2p143bwm/

[00000] [1] S. Dineen and P. Mellon, Holomorphic functions on symmetric Banach manifolds of compact type are constant, Math. Z., to appear. | Zbl 0937.46042

[00001] [2] J. Dorfmeister, Algebraic systems in differential geometry, in: Jordan Algebras, de Gruyter, Berlin, 1994, 9-33. | Zbl 0816.53003

[00002] [3] H. Hanche-Olsen and E. Størmer, Jordan Operator Algebras, Pitman, Boston, 1984.

[00003] [4] W. Holsztyński, Une généralisation du théorème de Brouwer sur les points invariants, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 603-606. | Zbl 0135.22902

[00004] [5] W. Kaup, Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228 (1977), 39-64. | Zbl 0335.58005

[00005] [6] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 138 (1983), 503-529. | Zbl 0519.32024

[00006] [7] W. Kaup, Hermitian Jordan triple systems and automorphisms of bounded symmetric domains, in: Non-Associative Algebra and Its Applications, Kluwer, Dordrecht, 1994, 204-214. | Zbl 0810.46075

[00007] [8] O. Loos, Bounded symmetric domains and Jordan pairs, lecture notes, Univ. of California at Irvine, 1977.

[00008] [9] O. Loos, Homogeneous algebraic varieties defined by Jordan pairs, Monatsh. Math. 86 (1978), 107-127. | Zbl 0404.14020

[00009] [10] J.-I. Nagata, Modern Dimension Theory, North-Holland, Amsterdam, 1985.

[00010] [11] M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math Soc. 46 (1983), 301-333.

[00011] [12] C. E. Rickart, Banach Algebras, Van Nostrand, Princeton, 1960.

[00012] [13] H. Upmeier, Symmetric Banach Manifolds and Jordan C*-Algebras, North-Holland, Amsterdam, 1985.

[00013] [14] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov, Rings That Are Nearly Associative, Academic Press, 1982.