An algorithm of factorization of positive definite matrix functions of second order is proposed.
@article{bwmeta1.element.bwnjournal-article-smv137i1p93bwm, author = {Gigla Janashia and Edem Lagvilava}, title = {A method of approximate factorization of positive definite matrix functions}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {93-100}, zbl = {0960.47013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv137i1p93bwm} }
Janashia, Gigla; Lagvilava, Edem. A method of approximate factorization of positive definite matrix functions. Studia Mathematica, Tome 133 (1999) pp. 93-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv137i1p93bwm/
[00000] [1] P. L. Duren, Theory of Spaces, Academic Press, 1970. | Zbl 0215.20203
[00001] [2] A. N. Kolmogorov, Stationary sequences in Hilbert space, Vestnik Moskov. Gos. Univ. 2 (1941), 1-40 (in Russian).
[00002] [3] P. Masani, The prediction theory of multivariate stochastic processes, III, Acta Math. 104 (1960), 141-162. | Zbl 0096.11505
[00003] [4] N. Wiener, On the factorization of matrices, Comm. Math. Helv. 29 (1955), 97-111. | Zbl 0064.06301
[00004] [5] N. Wiener and E. J. Akutowicz, A factorization of positive Hermitian matrices, J. Math. Mech. 8 (1959), 111-120. | Zbl 0082.28103
[00005] [6] N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes, I, Acta Math. 98 (1957), 111-150. | Zbl 0080.13002
[00006] [7] N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes, II, ibid. 99 (1958), 93-137.