Wold-type extension for N-tuples of commuting contractions
Kosiek, Marek ; Octavio, Alfredo
Studia Mathematica, Tome 133 (1999), p. 81-91 / Harvested from The Polish Digital Mathematics Library

Let (T1,…,TN) be an N-tuple of commuting contractions on a separable, complex, infinite-dimensional Hilbert space ℋ. We obtain the existence of a commuting N-tuple (V1,…,VN) of contractions on a superspace K of ℋ such that each Vj extends Tj, j=1,…,N, and the N-tuple (V1,…,VN) has a decomposition similar to the Wold-von Neumann decomposition for coisometries (although the Vj need not be coisometries). As an application, we obtain a new proof of a result of Słociński (see [9])

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216676
@article{bwmeta1.element.bwnjournal-article-smv137i1p81bwm,
     author = {Marek Kosiek and Alfredo Octavio},
     title = {Wold-type extension for N-tuples of commuting contractions},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {81-91},
     zbl = {0947.47013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv137i1p81bwm}
}
Kosiek, Marek; Octavio, Alfredo. Wold-type extension for N-tuples of commuting contractions. Studia Mathematica, Tome 133 (1999) pp. 81-91. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv137i1p81bwm/

[00000] [1] H. Bercovici, Notes on invariant subspaces, Bull. Amer. Math. Soc. 23 (1990), 1-36. | Zbl 0727.47001

[00001] [2] H. Bercovici, Commuting power-bounded operators, Acta Sci. Math. (Szeged) 57 (1993), 55-64. | Zbl 0819.47017

[00002] [3] H. Bercovici, C. Foiaş, and C. Pearcy, Dual Algebras with Applications to Invariant Subspaces and Dilation Theory, CBMS Regional Conf. Ser. in Math. 56, Amer. Math. Soc., Providence, RI, 1985. | Zbl 0569.47007

[00003] [4] L. Kérchy, Unitary asymptotes of Hilbert space operators, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 191-201. | Zbl 0807.47005

[00004] [5] M. Kosiek and A. Octavio, On common invariant subspaces for N-tuples of commuting contractions with rich spectrum, to appear. | Zbl 1061.47007

[00005] [6] M. Kosiek, A. Octavio, and M. Ptak, On the reflexivity of pairs of contractions, Proc. Amer. Math. Soc. 123 (1995), 1229-1236. | Zbl 0836.47006

[00006] [7] M. Kosiek and M. Ptak, Reflexivity of n-tuples of contractions with rich joint left essential spectrum, Integral Equations Operator Theory 13 (1990), 395-420. | Zbl 0743.47032

[00007] [8] A. Octavio, Coisometric extension and functional calculus for pairs of contractions, J. Operator Theory 31 (1994), 67-82. | Zbl 0872.47009

[00008] [9] M. Słociński, On the Wold type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), 255-262. | Zbl 0485.47018

[00009] [10] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970. | Zbl 0201.45003