On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions
Priola, Enrico
Studia Mathematica, Tome 133 (1999), p. 271-295 / Harvested from The Polish Digital Mathematics Library

We study a new class of Markov type semigroups (not strongly continuous in general) in the space of all real, uniformly continuous and bounded functions on a separable metric space E. Our results allow us to characterize the generators of Markov transition semigroups in infinite dimensions such as the heat and the Ornstein-Uhlenbeck semigroups.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216671
@article{bwmeta1.element.bwnjournal-article-smv136i3p271bwm,
     author = {Enrico Priola},
     title = {On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {271-295},
     zbl = {0955.47024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv136i3p271bwm}
}
Priola, Enrico. On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions. Studia Mathematica, Tome 133 (1999) pp. 271-295. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv136i3p271bwm/

[00000] [1] W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352. | Zbl 0637.44001

[00001] [2] R. B. Ash, Real Analysis and Probability, Academic Press, New York, 1972.

[00002] [3] P. Cannarsa and G. Da Prato, Infinite dimensional elliptic equations with Hölder continuous coefficients, Adv. Differential Equations 1 (1996), 425-452. | Zbl 0926.35153

[00003] [4] P. Cannarsa and G. Da Prato, Potential theory in Hilbert spaces, in: Proc. Sympos. Appl. Math. 54, Amer. Math. Soc., 1998, 27-51. | Zbl 0898.31008

[00004] [5] S. Cerrai, A Hille-Yosida theorem for weakly continuous semigroups, Semigroup Forum 49 (1994), 349-367. | Zbl 0817.47048

[00005] [6] S. Cerrai and F. Gozzi, Strong solutions of Cauchy problems associated to weakly continuous semigroups, Differential Integral Equations 8 (1994), 465-486. | Zbl 0822.47040

[00006] [7] G. Da Prato and A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal. 131 (1995), 94-114. | Zbl 0846.47004

[00007] [8] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl. 44, Cambridge Univ. Press, 1992. | Zbl 0761.60052

[00008] [9] J. Diestel, Sequences and Series in Banach Spaces, Grad. Text. in Math. 92, Springer, New York, 1984.

[00009] [10] E. B. Dynkin, Markov Processes, Vol. I, Springer, Berlin, 1965. | Zbl 0132.37901

[00010] [11] N. Ethier and T. G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, 1986. | Zbl 0592.60049

[00011] [12] M. Fuhrman and M. Röckner, Generalized Mehler semigroups: the non-Gaussian case, Potential Anal., to appear. | Zbl 0957.47028

[00012] [13] L. Gross, Potential theory on Hilbert space, J. Funct. Anal. 1 (1967), 123-181. | Zbl 0165.16403

[00013] [14] P. Guiotto, Non-differentiability of heat semigroups in infinite dimensional Hilbert spaces, Semigroup Forum 55 (1997), 232-236. | Zbl 0888.47022

[00014] [15] M. Hieber and H. Kellerman, Integrated semigroups, J. Funct. Anal. 84 (1989), 160-180. | Zbl 0689.47014

[00015] [16] B. Jefferies, Weakly integrable semigroups on locally convex spaces, ibid. 66 (1986), 347-364. | Zbl 0589.47043

[00016] [17] B. Jefferies, The generation of weakly integrable semigroups, ibid. 73 (1987), 195-215. | Zbl 0621.47037

[00017] [18] H. H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math. 463, Springer, 1975. | Zbl 0306.28010

[00018] [19] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995. | Zbl 0816.35001

[00019] [20] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.

[00020] [21] E. Priola, Schauder estimates for a homogeneous Dirichlet problem in a half space of a Hilbert space, Nonlinear Anal., to appear. | Zbl 0992.35108

[00021] [22] E. Priola, π-Semigroups and applications, preprint n. 9, Scuola Norm. Sup. Pisa, 1998.

[00022] [23] K. Yosida, Functional Analysis, 4th ed., Springer, Berlin, 1974.

[00023] [24] L. Zambotti, A new approach to existence and uniqueness for martingale problems in infinite dimensions, preprint n. 13, Scuola Norm. Sup. Pisa, 1998.