We derive various approximation results in the theory of Hardy spaces on circular domains G. Two applications are given, one to operators which admit a nice representation of , and the other to extremal problems with links to the theory of differential equations.
@article{bwmeta1.element.bwnjournal-article-smv136i3p255bwm, author = {I. Chalendar and J. Partington}, title = {Approximation problems and representations of Hardy spaces in circular domains}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {255-269}, zbl = {0952.30033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv136i3p255bwm} }
Chalendar, I.; Partington, J. Approximation problems and representations of Hardy spaces in circular domains. Studia Mathematica, Tome 133 (1999) pp. 255-269. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv136i3p255bwm/
[00000] [1] J. Agler, Rational dilation on an annulus, Ann. of Math. 121:537-563, 1985. | Zbl 0609.47013
[00001] [2] J. A. Ball and K. F. Clancey, Reproducing kernels for Hardy spaces on multiply connected domains, Integral Equations Operator Theory 25:35-57, 1996. | Zbl 0867.30038
[00002] [3] L. Baratchart and J. Leblond, Hardy approximation to functions on subsets of the circle with 1 ≤ p < ∞, Constr. Approx. 14:41-56, 1998. | Zbl 0894.30023
[00003] [4] L. Baratchart, J. Leblond and J. R. Partington, Hardy approximation to functions on subsets of the circle, ibid. 12:423-436, 1996. | Zbl 0853.30022
[00004] [5] H. Bercovici, C. Foiaş and C. Pearcy, Two Banach space methods and dual operator algebras, J. Funct. Anal. 78:306-345, 1988. | Zbl 0661.46004
[00005] [6] H. Bercovici, C. Hernandez-Garciadiego and V. Paulsen, Universal compressions of representations of , Math. Ann. 281:177-191, 1988.
[00006] [7] J. Bourgain, Some consequences of Pisier's approach to interpolation, Israel J. Math. 77:165-185, 1992. | Zbl 0788.46070
[00007] [8] I. Chalendar and J. Esterle, -factorization for -contractions with isometric functional calculus, J. Funct. Anal. 154:174-194, 1998. | Zbl 0914.47013
[00008] [9] B. Chevreau and W. S. Li, On certain representations of and the reflexivity of associated operator algebras, ibid. 128:341-373, 1995. | Zbl 0871.47034
[00009] [10] B. Chevreau, C. Pearcy and A. L. Shields, Finitely connected domains G, representations of , and invariant subspaces, J. Operator Theory 6:375-405, 1981. | Zbl 0525.47004
[00010] [11] R. G. Douglas and V. Paulsen, Completely bounded maps and hypo-Dirichlet algebras, Acta Sci. Math. (Szeged) 50:143-157, 1986. | Zbl 0649.46053
[00011] [12] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, 1969 (translated from Russian). | Zbl 0183.07502
[00012] [13] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1965.
[00013] [14] P. W. Jones, estimates for the -problem in a half-plane, Acta Math. 150:137-152, 1983. | Zbl 0516.35060
[00014] [15] S. V. Kisliakov, Quantitative aspect of correction theorems, Zap. Nauchn. Sem. LOMI 92:182-191, 1979. | Zbl 0434.42017
[00015] [16] S. V. Kisliakov, A sharp correction theorem, Studia Math. 113:177-196, 1995. | Zbl 0833.42009
[00016] [17] J. Leblond and J. R. Partington, Constrained approximation and interpolation in Hilbert function spaces, J. Math. Anal. Appl., to appear. | Zbl 0961.41025
[00017] [18] G. Pisier, Interpolation between spaces and non-commutative generalizations I, Pacific J. Math. 155:341-368, 1992. | Zbl 0747.46050
[00018] [19] W. Rudin, Analytic functions of class , Trans. Amer. Math. Soc. 78:46-66, 1955. | Zbl 0064.31203
[00019] [20] W. Rudin, Real and Complex Analysis, McGraw-Hill, third ed., 1986.
[00020] [21] X. Zheng, Functional calculus and its application to operator algebras, Integral Equations Operator Theory 24:484-496, 1996. | Zbl 0846.47013