Continuity of generalized inverses in Banach algebras
Roch, Steffen ; Silbermann, Bernd
Studia Mathematica, Tome 133 (1999), p. 197-227 / Harvested from The Polish Digital Mathematics Library

The main topic of the paper is the continuity of several kinds of generalized inversion of elements in a Banach algebra with identity. We introduce the notion of asymptotic generalized invertibility and completely characterize sequences of elements with this property. Based on this result, we derive continuity criteria which generalize the well known criteria from operator theory.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216668
@article{bwmeta1.element.bwnjournal-article-smv136i3p197bwm,
     author = {Steffen Roch and Bernd Silbermann},
     title = {Continuity of generalized inverses in Banach algebras},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {197-227},
     zbl = {0962.47002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv136i3p197bwm}
}
Roch, Steffen; Silbermann, Bernd. Continuity of generalized inverses in Banach algebras. Studia Mathematica, Tome 133 (1999) pp. 197-227. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv136i3p197bwm/

[00000] [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. | Zbl 0271.46039

[00001] [2] A. Böttcher, On the approximation numbers of large Toeplitz matrices, Doc. Math. 2 (1997), 1-29. | Zbl 0873.47014

[00002] [3] N. Bourbaki, Éléments de Mathématique, Fascicule XXXII, Théories spectrales, Hermann, Paris, 1967.

[00003] [4] I. Gohberg and N. Krupnik, Introduction to the Theory of One-Dimensional Singular Integral Operators, Birkhäuser, Basel, 1992. | Zbl 0743.45004

[00004] [5] R. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992), 71-77. | Zbl 0810.46062

[00005] [6] R. Harte and M. Mbekhta, Generalized inverses in C*-algebras, II, ibid. 106 (1993), 129-138. | Zbl 0810.46063

[00006] [7] D. R. Huang, Generalized inverses over Banach algebras, Integral Equations Operator Theory 15 (1992), 454-469. | Zbl 0761.46038

[00007] [8] D. R. Huang, Group inverses and Drazin inverses over Banach algebras, ibid. 17 (1993), 54-67. | Zbl 0790.15005

[00008] [9] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381. | Zbl 0897.47002

[00009] [10] J. J. Koliha and V. Rakočević, Continuity of the Drazin inverse, II, Studia Math. 131 (1998), 167-177. | Zbl 0926.47001

[00010] [11] S. G. Michlin und S. Prössdorf, Singuläre Integraloperatoren, Akademie-Verlag, Berlin, 1980 (extended English translation: Singular Integral Operators, Akademie-Verlag and Springer, 1986).

[00011] [12] S. K. Mitra and C. R. Rao, Generalized Inverse of Matrices and its Applications, Wiley, New York, 1971. | Zbl 0236.15004

[00012] [13] R. H. Moore and M. Z. Nashed, Approximation of generalized inverses of linear operators, SIAM J. Appl. Math. 27 (1974), 1-16. | Zbl 0295.41018

[00013] [14] M. Z. Nashed (ed.), Generalized Inverses and Applications, Academic Press, New York, 1976.

[00014] [15] V. Rakočević, Continuity of the Drazin inverse, J. Operator Theory 41 (1999), 55-68. | Zbl 0990.47002

[00015] [16] S. Roch and B. Silbermann, C*-algebra techniques in numerical analysis, ibid. 35 (1996), 241-280. | Zbl 0865.65035

[00016] [17] S. Roch and B. Silbermann, Asymptotic Moore-Penrose invertibility of singular integral operators, Integral Equations Operator Theory 26 (1996), 81-101. | Zbl 0860.65145

[00017] [18] S. Roch and B. Silbermann, Index calculus for approximation methods, and singular value decomposition, J. Math. Anal. Appl. 225 (1998), 401-426. | Zbl 0923.65026

[00018] [18] B. Silbermann, Asymptotic Moore-Penrose inversion of Toeplitz operators, Linear Algebra Appl. 256 (1997), 219-234. | Zbl 0880.15002