A study is made of a symmetric functional calculus for a system of bounded linear operators acting on a Banach space. Finite real linear combinations of the operators have real spectra, but the operators do not necessarily commute with each other. Analytic functions of the operators are formed by using functions taking their values in a Clifford algebra.
@article{bwmeta1.element.bwnjournal-article-smv136i2p99bwm, author = {Brian Jefferies and Alan McIntosh and James Picton-Warlow}, title = {The monogenic functional calculus}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {99-119}, zbl = {0971.47013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv136i2p99bwm} }
Jefferies, Brian; McIntosh, Alan; Picton-Warlow, James. The monogenic functional calculus. Studia Mathematica, Tome 133 (1999) pp. 99-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv136i2p99bwm/
[00000] [1] R. F. V. Anderson, The Weyl functional calculus, J. Funct. Anal. 4 (1969), 240-267. | Zbl 0191.13403
[00001] [2] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman Res. Notes Math. Ser. 76, Pitman, Boston, 1982.
[00002] [3] B. Jefferies and A. McIntosh, The Weyl calculus and Clifford analysis, Bull. Austral. Math. Soc. 57 (1998), 329-341. | Zbl 0915.47015
[00003] [4] B. Jefferies and B. Straub, Lacunas in the support of the Weyl calculus for two hermitian matrices, submitted. | Zbl 1059.47016
[00004] [5] V. V. Kisil, Möbius transformations and monogenic functional calculus, ERA Amer. Math. Soc. 2 (1996), 26-33.
[00005] [6] V. V. Kisil and E. Ramírez de Arellano, The Riesz-Clifford functional calculus for non-commuting operators and quantum field theory, Math. Methods Appl. Sci. 19 (1996), 593-605. | Zbl 0853.47012
[00006] [7] C. Li, A. McIntosh and T. Qian, Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces, Rev. Mat. Iberoamericana 10 (1994), 665-721. | Zbl 0817.42008
[00007] [8] A. McIntosh and A. Pryde, The solution of systems of operator equations using Clifford algebras, in: Miniconf. on Linear Analysis and Function Spaces 1984, Centre for Mathematical Analysis, ANU, Canberra, 9 (1985), 212-222.
[00008] [9] A. McIntosh and A. Pryde, A functional calculus for several commuting operators, Indiana Univ. Math. J. 36 (1987), 421-439. | Zbl 0694.47015
[00009] [10] A. McIntosh, A. Pryde and W. Ricker, Comparison of joint spectra for certain classes of commuting operators, Studia Math. 88 (1988), 23-36. | Zbl 0665.47002
[00010] [11] J. Ryan, Plemelj formulae and transformations associated to plane wave decompositions in complex Clifford analysis, Proc. London Math. Soc. 64 (1992), 70-94. | Zbl 0703.30043
[00011] [12] F. Sommen, Plane wave decompositions of monogenic functions, Ann. Polon. Math. 49 (1988), 101-114. | Zbl 0673.30038
[00012] [13] J. L. Taylor, The analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38. | Zbl 0233.47025