The Lévy continuity theorem for nuclear groups
Banaszczyk, W.
Studia Mathematica, Tome 133 (1999), p. 183-196 / Harvested from The Polish Digital Mathematics Library

Let G be an abelian topological group. The Lévy continuity theorem says that if G is an LCA group, then it has the following property (PL) a sequence of Radon probability measures on G is weakly convergent to a Radon probability measure μ if and only if the corresponding sequence of Fourier transforms is pointwise convergent to the Fourier transform of μ. Boulicaut [Bo] proved that every nuclear locally convex space G has the property (PL). In this paper we prove that the property (PL) is inherited by nuclear groups, a variety of abelian topological groups containing LCA groups and nuclear locally convex spaces, introduced in [B1].

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216666
@article{bwmeta1.element.bwnjournal-article-smv136i2p183bwm,
     author = {W. Banaszczyk},
     title = {The L\'evy continuity theorem for nuclear groups},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {183-196},
     zbl = {0940.43001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv136i2p183bwm}
}
Banaszczyk, W. The Lévy continuity theorem for nuclear groups. Studia Mathematica, Tome 133 (1999) pp. 183-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv136i2p183bwm/

[00000] [A] L. Außenhofer, Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups, Ph.D. thesis, Tübingen University, 1998 (to appear in Dissertationes Math.). | Zbl 0905.22001

[00001] [B1] W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Lecture Notes in Math. 1466, Springer, Berlin, 1991.

[00002] [B2] W. Banaszczyk, Inequalities for convex bodies and polar reciprocal lattices in n, Discrete Comput. Geom. 13 (1995), 217-231. | Zbl 0824.52011

[00003] [B3] W. Banaszczyk, The Minlos lemma for positive-definite functions on additive subgroups of n, Studia Math. 126 (1997), 13-25. | Zbl 0894.43004

[00004] [BT] W. Banaszczyk and V. Tarieladze, The Lévy continuity theorem and related questions for nuclear groups, in preparation.

[00005] [Bo] P. Boulicaut, Convergence cylindrique et convergence étroite d'une suite de probabilités de Radon, Z. Wahrsch. Verw. Gebiete 28 (1973), 43-52. | Zbl 0276.60003

[00006] [G] J. Galindo, Structure and analysis on nuclear groups, preprint, 1997.

[00007] [H] J. Hejcman, Boundedness in uniform spaces and topological groups, Czechoslovak Math. J. 9 (1959), 544-562. | Zbl 0132.18202

[00008] [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. II, Springer, Berlin, 1970.

[00009] [M] A. Mądrecki, Minlos' theorem in non-Archimedean locally convex spaces, Comment. Math. Prace Mat. 30 (1990), 101-111. | Zbl 0754.43002

[00010] [VTCh] N. N. Vakhaniya, V. I. Tarieladze and S. A. Chobanyan, Probability Distributions on Banach Spaces, D. Reidel, Dordrecht, 1987.

[00011] [Y] Y. Yang, On a generalization of Minlos theorem, Fudan Xuebao 20 (1981), 31-37 (in Chinese). | Zbl 0565.28011