There exists an absolute constant such that for any n-dimensional Banach space E there exists a k-dimensional subspace F ⊂ E with k≤ n/2 such that . The concept of volume ratio with respect to -spaces is used to prove the following distance estimate for : .
@article{bwmeta1.element.bwnjournal-article-smv136i2p147bwm, author = {Yehoram Gordon and Marius Junge}, title = {Volume ratios in $L\_p$-spaces}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {147-182}, zbl = {0952.46008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv136i2p147bwm} }
Gordon, Yehoram; Junge, Marius. Volume ratios in $L_p$-spaces. Studia Mathematica, Tome 133 (1999) pp. 147-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv136i2p147bwm/
[00000] [Ba] K. Ball, Normed spaces with a weak-Gordon-Lewis property, in: Functional Analysis (Austin, TX, 1987/1989), Lecture Notes in Math. 1470, Springer, 1991, 36-47.
[00001] [BaP] K. Ball and A. Pajor, Convex bodies with few faces, Proc. Amer. Math. Soc. 110 (1990), 225-231. | Zbl 0704.52003
[00002] [BF] I. Bárány and Z. Füredi, Computing the volume is difficult, Discrete Comput. Geom. 2 (1987), 319-326. | Zbl 0628.68041
[00003] [BG] Y. Benyamini and Y. Gordon, Random factorization of operators between Banach spaces, J. Anal. Math. 39 (1981), 45-74. | Zbl 0474.47010
[00004] [Bo] J. Bourgain, Subspaces of , arithmetical diameter and Sidon sets, in; Probability in Banach Spaces V (Medford, 1984), Lecture Notes in Math. 1153, Springer, Berlin, 1985, 96-127.
[00005] [BLM] J. Bourgain, J. Lindenstrauss and V. D. Milman, Approximation of zonoids by zonotopes, Acta Math. 162 (1989), 73-141. | Zbl 0682.46008
[00006] [BM] J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in , Invent. Math. 88 (1987), 319-340. | Zbl 0617.52006
[00007] [BT] J. Bourgain and L. Tzafriri, Embedding in subspaces of for p>2, Israel J. Math. 72 (1990), 321-340.
[00008] [Ca] B. Carl, Inequalities of Bernstein-Jackson type and the degree of compactness of operators in Banach spaces, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 3, 79-118. | Zbl 0564.47009
[00009] [CAR] B. Carl, Inequalities between absolutely (p,q)-summing norms, Studia Math. 69 (1980), 143-148. | Zbl 0468.47012
[00010] [CP] B. Carl and A. Pajor, Gelfand numbers of operators with values in a Hilbert space, Invent. Math. 94 (1988), 479-504. | Zbl 0668.47014
[00011] [D] R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal. 1 (1967), 290-330. | Zbl 0188.20502
[00012] [DJ] A. Defant and M. Junge, On some matrix inequalities in Banach spaces, Rev. R. Acad. Cien. Exactas Fis. Nat. (Esp.) 0 (1996), 133-140. | Zbl 0884.47010
[00013] [FJ] T. Figiel and W. B. Johnson, Large subspaces of and estimates of the Gordon-Lewis constant, Israel J. Math. 37 (1980), 92-112. | Zbl 0445.46012
[00014] [FLM] T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94. | Zbl 0375.52002
[00015] [GE1] S. Geiss, Grothendieck numbers of linear and continuous operators on Banach spaces, Math. Nachr. 148 (1990), 65-79. | Zbl 0735.47011
[00016] [GTT] E. D. Gluskin, N. Tomczak-Jaegermann and L. Tzafriri, Subspaces of of small codimension, Israel J. Math. 79 (1992), 173-192. | Zbl 0792.46010
[00017] [GO1] Y. Gordon, On the projection and MacPhail constants in , ibid. 4 (1966), 177-188.
[00018] [GO1] Y. Gordon, Some inequalities for Gaussian processes and applications, ibid. 50 (1985), 177-188.
[00019] [GJ] Y. Gordon and M. Junge, Volume formulas in -spaces, Positivity 1 (1997), 7-43. | Zbl 0911.46010
[00020] [GJ] Y. Gordon and M. Junge, Vector valued Gordon-Lewis property and volume estimates, in preparation.
[00021] [GJN] Y. Gordon, M. Junge and N. J. Nielsen, The relations between volume ratios and new concepts of GL constants, Positivity 1 (1997), 359-379. | Zbl 0902.46004
[00022] [GMP] Y. Gordon, M. Meyer and A. Pajor, Ratios of volumes and factorization , Illinois J. Math. 40 (1996), 91-107. | Zbl 0843.46008
[00023] [Gue] O. Guédon, Gaussian version of theorem of Milman and Schechtman, Positivity 1 (1997), 1-5. | Zbl 0912.46008
[00024] [J] F. John, Extremum problems with inequalities as subsidiary conditions, in: Studies and Essays Presented to R. Courant on his 60th Birthday, Interscience, New York, 1948, 187-204.
[00025] [JU1] M. Junge, Charakterisierung der K-Konvexität durch Volumenquotienten, Master thesis, Kiel, 1989.
[00026] [JU1] M. Junge, Hyperplane conjecture for quotient spaces of , Forum Math. 6 (1994), 617-635. | Zbl 0809.52009
[00027] [L] D. R. Lewis, Finite dimensional subspaces of , Studia Math. 63 (1978), 207-212. | Zbl 0406.46023
[00028] [MaP] M. Marcus and G. Pisier, Random Fourier Series with Application to Harmonic Analysis, Ann. of Math. Stud. 101, Princeton Univ. Press, 1981.
[00029] [MAS] V. Mascioni, On generalized volume ratio numbers, Bull. Sci. Math. 115 (1991), 453-510. | Zbl 0771.46010
[00030] [M] B. Maurey, Un théorème de prolongement, C. R. Acad. Sci. Paris Sér. A 279 (1974), 329-332.
[00031] [MP] M. Meyer and A. Pajor, Sections of the unit ball of , J. Funct. Anal. 80 (1988), 109-123. | Zbl 0667.46004
[00032] [MiP] V. Milman and G. Pisier, Banach spaces with a weak cotype 2 property, Israel J. Math. 54 (1986), 139-158. | Zbl 0611.46022
[00033] [PT] A. Pajor and N. Tomczak-Jaegermann, Volume ratio and other s-numbers related to local properties of Banach spaces, J. Funct. Anal. 87 (1989), 273-293. | Zbl 0717.46010
[00034] [PES] A. Pełczyński and S. J. Szarek, On parallelepipeds of minimal volume containing a convex symmetric body in , Math. Proc. Cambridge Philos. Soc. 109 (1991), 125-148. | Zbl 0718.52007
[00035] [PIE] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.
[00036] [PS1] G. Pisier, Holomorphic semi-groups and the geometry of Banach spaces, Ann. of Math. 115 (1982), 375-392. | Zbl 0487.46008
[00037] [PS1] G. Pisier, Factorization of Linear Operators and the Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., 1986, reprinted with corrections, 1987.
[00038] [PS1] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Math. 94, Cambridge Univ. Press, 1989.
[00039] [S] L. Santaló, Un invarianta afin para los cuerpos convexos del espacio de n dimensiones, Portugal. Math. 8 (1949), 155-161.
[00040] [SC] C. Schütt, On the volume of unit balls in Banach spaces, Compositio Math. 47 (1982), 393-407.
[00041] [So] A. Sobczyk, Projections in Minkowski and Banach spaces, Duke J. Math. 8 (1941), 78-106. | Zbl 67.0403.03
[00042] [ST] S. Szarek and M. Talagrand, An "isomorphic" version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube, in: Geometric Aspects of Functional Analysis (1987-88), Lecture Notes in Math. 1376, Springer, Berlin, 1989, 105-112.
[00043] [TJ] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs Surveys Pure Appl. Math. 38, Longman Sci. Tech., Wiley, New York,1989.