We solve several problems in the theory of polynomials in Banach spaces. (i) There exist Banach spaces without the Dunford-Pettis property and without upper p-estimates in which all multilinear forms are weakly sequentially continuous: some Lorentz sequence spaces, their natural preduals and, most notably, the dual of Schreier's space. (ii) There exist Banach spaces X without the Dunford-Pettis property such that all multilinear forms on X and X* are weakly sequentially continuous; this gives an answer to a question of Dimant and Zalduendo [20]. (iii) The sum of two polynomially null sequences need not be polynomially null; this answers a question of Biström, Jaramillo and Lindström [8] and also of González and Gutiérrez [23]. (iv), (v) The absolutely convex closed hull of a pw-compact set need not be pw-compact; the projective tensor product of two polynomially null sequences need not be a polynomially null sequence. This answers two questions of González and Gutiérrez [23]. (vi) There exists a Banach space without property (P); this answers a question of Aron, Choi and Llavona [5].
@article{bwmeta1.element.bwnjournal-article-smv136i2p121bwm, author = {Jes\'us Castillo and Ricardo Garc\'\i a and Raquel Gonzalo}, title = {Banach spaces in which all multilinear forms are weakly sequentially continuous}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {121-145}, zbl = {0948.46010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv136i2p121bwm} }
Castillo, Jesús; García, Ricardo; Gonzalo, Raquel. Banach spaces in which all multilinear forms are weakly sequentially continuous. Studia Mathematica, Tome 133 (1999) pp. 121-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv136i2p121bwm/
[00000] [1] R. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411. | Zbl 0536.46015
[00001] [2] R. Alencar, R. Aron and G. Fricke, Tensor products of Tsirelson's space, Illinois J. Math. 31 (1987), 17-23. | Zbl 0587.46016
[00002] [3] R. Alencar and K. Floret, Weak-strong continuity of multilinear mappings and the Pełczyński-Pitt theorem, J. Math Anal. Appl. 206 (1997), 532-546. | Zbl 0887.46004
[00003] [4] Z. Altshuler, P. G. Casazza and B. L. Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15 (1993), 140-155. | Zbl 0264.46011
[00004] [5] R. M. Aron, Y. S. Choi and J. G. Llavona, Estimates by polynomials, Bull. Austral. Math. Soc. 52 (1995), 475-486.
[00005] [6] R. M. Aron and S. Dineen, Q-reflexive Banach spaces, Rocky Mountain J. Math. 27 (1997), 1009-1025. | Zbl 0916.46011
[00006] [7] B. Beauzamy et J. T. Lapresté, Modèles étalés des espaces de Banach, Hermann, Paris, 1984. | Zbl 0553.46012
[00007] [8] P. Biström, J. A. Jaramillo and M. Lindström, Polynomial compactness in Banach spaces, Rocky Mountain J. Math., to appear. | Zbl 0946.46040
[00008] [9] T. Carne, B. Cole and T. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer. Math. Soc. 314 (1989), 639-659. | Zbl 0704.46033
[00009] [10] P. G. Casazza and B. L. Lin, On symmetric basis sequences in Lorentz sequence spaces II, Israel J. Math. 17 (1974), 191-218. | Zbl 0286.46019
[00010] [11] J. M. F. Castillo, On Banach spaces X such that , Extracta Math. 10 (1995), 27-36. | Zbl 0882.46008
[00011] [12] J. M. F. Castillo, R. García and R. Gonzalo, Stability properties of the class of Banach spaces in which all multilinear forms are weakly sequentially continuous, preprint, 1999. | Zbl 1004.46011
[00012] [13] J. M. F. Castillo and M. González, The Dunford-Pettis property is not a three-space property, Israel J. Math. 81 (1993), 297-299. | Zbl 0785.46020
[00013] [14] J. M. F. Castillo and M. González, New results on the Dunford-Pettis property, Bull. London Math. Soc. 27 (1995), 599-605. | Zbl 0872.46009
[00014] [15] J. M. F. Castillo, M. González and F. Sánchez, M-ideals of Schreier type and the Dunford-Pettis property, in: Non-Associative Algebra and its Applications, S. González (ed.), Kluwer, 1994, 81-85. | Zbl 0820.46009
[00015] [16] J. M. F. Castillo and F. Sánchez, Remarks on some basic properties of Tsirelson's space, Note Mat. 13 (1993), 117-122. | Zbl 0820.46014
[00016] [17] J. M. F. Castillo and F. Sánchez, Weakly p-compact, p-Banach-Saks, and super-reflexive Banach spaces, J. Math. Anal. Appl. 185 (1994), 256-261. | Zbl 0878.46009
[00017] [18] Y. S. Choi and S. G. Kim, Polynomial properties of Banach spaces, J. Math. Anal. Appl. 190 (1995), 203-210. | Zbl 0829.46035
[00018] [19] J. C. Díaz, Non-containment of in projective tensor products of Banach spaces, Rev. Mat. Univ. Complut. Madrid 3 (1990), 121-124. | Zbl 0727.46009
[00019] [20] V. Dimant and I. Zalduendo, Bases in spaces of multilinear forms over Banach spaces, J. Math. Anal. Appl. 200 (1996), 548-566.
[00020] [21] G. Emmanuele, A dual characterization of spaces not containing , Bull. Polish Acad. Sci. 34 (1986), 155-160.
[00021] [22] J. D. Farmer, Polynomial reflexivity in Banach spaces, Israel J. Math. 87 (1994), 257-273. | Zbl 0819.46006
[00022] [23] M. González and J. M. Gutiérrez, Gantmacher type theorems for holomorphic mappings, Math. Nachr. 186 (1997), 131-145. | Zbl 0898.46035
[00023] [24] M. González and J. M. Gutiérrez, Polynomials on Schreier's space, preprint, 1997. | Zbl 0985.46003
[00024] [25] R. Gonzalo, Multilinear forms, subsymmetric polynomials and spreading models, J. Math. Anal. Appl. 202 (1996), 379-397. | Zbl 0872.46012
[00025] [26] R. Gonzalo and J. A. Jaramillo, Smoothness and estimates of sequences in Banach spaces, Israel J. Math. 89 (1995), 321-341. | Zbl 0823.46013
[00026] [27] R. Gonzalo and J. A. Jaramillo, Compact polynomials between Banach spaces, Proc. Roy. Irish Acad. Sect. A 95 (1995), 213-226. | Zbl 0853.46039
[00027] [28] J. M. Gutiérrez, J. A. Jaramillo and J. G. Llavona, Polynomials and geometry of Banach spaces, Extracta Math. 10 (1995), 79-114.
[00028] [29] J. A. Jaramillo and A. Prieto, Weak-polynomial convergence on a Banach space, Proc. Amer. Math. Soc. 118 (1993), 463-468. | Zbl 0795.46042
[00029] [30] M. Jiménez Sevilla and R. Payá, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math. 137 (1998), 99-112. | Zbl 0909.46015
[00030] [31] H. Knaust and E. Odell, Weakly null sequences with upper -estimates, in: Lecture Notes in Math. 1470, Springer, 1990, 85-107. | Zbl 0759.46013
[00031] [32] D. Leung, On -saturated Banach spaces, Illinois J. Math. 39 (1995), 15-29. | Zbl 0808.46025
[00032] [33] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1977. | Zbl 0362.46013
[00033] [34] J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Stud. 120, North-Holland, Amsterdam, 1996.
[00034] [35] A. Pełczyński, A property of multilinear operations, Studia Math. 16 (1957), 173-182. | Zbl 0080.09701
[00035] [36] R. A. Ryan, Dunford-Pettis properties, Bull. Acad. Polon. Sci. 27 (1979), 373-379. | Zbl 0418.46006
[00036] [37] C. Stegall, Duals of certain spaces with the Dunford-Pettis property, Notices Amer. Math. Soc. 19 (1972), A-799.
[00037] [38] E. Straeuli, On Hahn-Banach extensions for certain operator ideals, Arch. Math. (Basel) 47 (1986), 49-54. | Zbl 0573.47042
[00038] [39] M. Valdivia, Complemented subspaces and interpolation properties in spaces of polynomials, J. Math. Anal. Appl. 208 (1997), 1-30. | Zbl 0890.46034