Supporting sequences of pure states on JB algebras
Hamhalter, Jan
Studia Mathematica, Tome 133 (1999), p. 37-47 / Harvested from The Polish Digital Mathematics Library

We show that any sequence (φn) of mutually orthogonal pure states on a JB algebra A such that (φn) forms an almost discrete sequence in the relative topology induced by the primitive ideal space of A admits a sequence (an) consisting of positive, norm one, elements of A with pairwise orthogonal supports which is supporting for (φn) in the sense of φn(an)=1 for all n. Moreover, if A is separable then (an) can be taken such that (φn) is uniquely determined by the biorthogonality condition φn(an)=1. Consequences of this result improving hitherto known extension theorems for C*-algebras and descriptions of dual JB algebras are given.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216659
@article{bwmeta1.element.bwnjournal-article-smv136i1p37bwm,
     author = {Jan Hamhalter},
     title = {Supporting sequences of pure states on JB algebras},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {37-47},
     zbl = {0939.46036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv136i1p37bwm}
}
Hamhalter, Jan. Supporting sequences of pure states on JB algebras. Studia Mathematica, Tome 133 (1999) pp. 37-47. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv136i1p37bwm/

[00000] [1] J. F. Aarnes and R. V. Kadison, Pure states and approximate identities, Proc. Amer. Math. Soc. 21 (1969), 749-752. | Zbl 0177.41302

[00001] [2] C. A. Akemann, Approximate units and maximal abelian C* -subalgebras, Pacific J. Math. 33 (1970), 543-550. | Zbl 0184.16903

[00002] [3] C. A. Akemann, Left ideal structure of C* -algebras, J. Funct. Anal. 6 (1970), 305-317.

[00003] [4] C. A. Akemann, J. Anderson and G. K. Pedersen, Excising states on C* -algebras, Canad. J. Math. 38 (1986), 1239-1260. | Zbl 0704.46043

[00004] [5] C. A. Akemann, J. Anderson and G. K. Pedersen, Approaching infinity in C* -algebras, J. Operator Theory 21 (1989), 255-271. | Zbl 0714.46042

[00005] [6] J. Anderson, Extensions, restrictions, and representations of states on C* - algebras, Trans. Amer. Math. Soc. 249 (1979), 303-329. | Zbl 0408.46049

[00006] [7] L. J. Bunce, The theory and structure of dual JB-algebras, Math. Z. 180 (1982), 525-534. | Zbl 0518.46053

[00007] [8] S. P. Gudder, Stochastic Methods in Quantum Mechanics, North-Holland, Amsterdam, 1979. | Zbl 0439.46047

[00008] [9] J. Hamhalter, Gleason property and extensions of states on projection logics, Bull. London Math. Soc. 26 (1994), 367-372. | Zbl 0830.46055

[00009] [10] J. Hamhalter, Determinacy of states and independence of operator algebras, Internat. J. Theoret. Phys. 37 (1998), 599-607. | Zbl 0910.46042

[00010] [11] H. Hanche-Olsen and E. Størmer, Jordan Operator Algebras, Pitman, Boston, 1984.

[00011] [12] R. V. Kadison and I. M. Singer, Extensions of pure states, Amer. J. Math. 81 (1959), 383-400. | Zbl 0086.09704

[00012] [13] I. E. Segal, Postulates for general quantum mechanics, Ann. of Math. 48 (1947), 930-938. | Zbl 0034.06602

[00013] [14] E. Størmer, Irreducible Jordan algebras of self-adjoint operators, Trans. Amer. Math. Soc. 130 (1968), 153-166. | Zbl 0164.44602