Interpolation of real method spaces via some ideals of operators
Mastyło, Mieczysław ; Milman, Mario
Studia Mathematica, Tome 133 (1999), p. 17-35 / Harvested from The Polish Digital Mathematics Library

Certain operator ideals are used to study interpolation of operators between spaces generated by the real method. Using orbital equivalence a new reiteration formula is proved for certain real interpolation spaces generated by ordered pairs of Banach lattices of the form (X,L(w)). As an application we extend Ovchinnikov’s interpolation theorem from the context of classical Lions-Peetre spaces to a larger class of real interpolation spaces. A description of certain abstract J-method spaces is also presented.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216657
@article{bwmeta1.element.bwnjournal-article-smv136i1p17bwm,
     author = {Mieczys\l aw Masty\l o and Mario Milman},
     title = {Interpolation of real method spaces via some ideals of operators},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {17-35},
     zbl = {0939.46040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv136i1p17bwm}
}
Mastyło, Mieczysław; Milman, Mario. Interpolation of real method spaces via some ideals of operators. Studia Mathematica, Tome 133 (1999) pp. 17-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv136i1p17bwm/

[00000] [1] G. Bennett, Inclusion mappings between lp spaces, J. Funct. Anal. 13 (1973), 20-27. | Zbl 0255.47033

[00001] [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. | Zbl 0344.46071

[00002] [3] Yu. A. Brudnyĭ and N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces I, North-Holland, Amsterdam, 1991.

[00003] [4] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. | Zbl 0204.13703

[00004] [5] M. Cwikel and J. Peetre, Abstract K and J spaces, J. Math. Pures Appl. 60 (1981), 1-50.

[00005] [6] M. Cwikel and Y. Sagher, Relation between real and complex interpolation spaces, Indiana Univ. Math. J. 36 (1987), 905-912.

[00006] [7] V. I. Dmitriev, Duality of the interpolation methods of constants and means, Dokl. Akad. Nauk SSSR 214 (1974), 22-24 (in Russian).

[00007] [8] S. Janson, Maximal and minimal methods of interpolation, J. Funct. Anal. 44 (1981), 50-73. | Zbl 0492.46059

[00008] [9] S. G. Kreĭn, Yu. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Nauka, Moscow, 1978 (in Russian); English transl.: Amer. Math. Soc., Providence, 1982.

[00009] [10] G. Ya. Lozanovskiĭ, On some Banach lattices IV, Sibirsk. Mat. Zh. 14 (1973), 140-155 (in Russian); English transl.: Siberian Math. J. 14 (1973), 97-108.

[00010] [11] L. Maligranda and M. Mastyło, Inclusion mappings between Orlicz sequence spaces, Report No. 090/1998, 12 pp., Faculty of Math. & Comp. Sci., Poznań. | Zbl 0982.46017

[00011] [12] V. I. Ovchinnikov, The methods of orbits in interpolation theory, Math. Rep. 1 (1984), 349-516.

[00012] [13] V. I. Ovchinnikov, Interpolation theorems for Lp,q-spaces, Mat. Sb. 136 (1988), 227-240 (in Russian). | Zbl 0657.46056

[00013] [14] A. Pietsch, Operator Ideals, North-Holland, Berlin, 1978.

[00014] [15] Y. Sagher, Interpolation of r-Banach spaces, Studia Math. 41 (1972), 45-70.

[00015] [16] G. Sparr, Interpolation of weighted Lp-spaces, ibid. 62 (1978), 229-271. | Zbl 0393.46029