Some statements of the paper [4] are corrected.
@article{bwmeta1.element.bwnjournal-article-smv135i3p299bwm, author = {Yuri Tomilov}, title = {Corrigendum to ``On the spectral bound of the generator of a $C\_0$-semigroup'' (Studia Math. 125 (1997), 23-33)}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {299-301}, zbl = {0892.47046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv135i3p299bwm} }
Tomilov, Yuri. Corrigendum to “On the spectral bound of the generator of a $C_0$-semigroup” (Studia Math. 125 (1997), 23-33). Studia Mathematica, Tome 133 (1999) pp. 299-301. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv135i3p299bwm/
[00000] [1] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., Providence, R.I., 1957. | Zbl 0078.10004
[00001] [2] J. M. A. M. van Neerven, Exponential stability of operators and operator semigroups, J. Funct. Anal. 130 (1995), 293-309. | Zbl 0832.47034
[00002] [3] J. M. A. M. van Neerven, B. Straub and L. Weis, On the asymptotic behaviour of a semigroup of linear operators, Indag. Math. 6 (1995), 453-476. | Zbl 0849.47018
[00003] [4] Yu. Tomilov, On the spectral bound of the generator of a -semigroup, Studia Math. 125 (1997), 23-33.
[00004] [5] G. Weiss, Weak -stability of a linear semigroup on a Hilbert space implies exponential stability, J. Differential Equations 76 (1988), 269-285. | Zbl 0675.47031
[00005] [6] P. Yao and D. Feng, A characteristic condition for stability of -semigroups, Chinese Sci. Bull. 39 (1994), 534-537. | Zbl 0815.47056