What is "local theory of Banach spaces"?
Pietsch, Albrecht
Studia Mathematica, Tome 133 (1999), p. 273-298 / Harvested from The Polish Digital Mathematics Library

Banach space theory splits into several subtheories. On the one hand, there are an isometric and an isomorphic part; on the other hand, we speak of global and local aspects. While the concepts of isometry and isomorphy are clear, everybody seems to have its own interpretation of what "local theory" means. In this essay we analyze this situation and propose rigorous definitions, which are based on new concepts of local representability of operators.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216655
@article{bwmeta1.element.bwnjournal-article-smv135i3p273bwm,
     author = {Albrecht Pietsch},
     title = {What is "local theory of Banach spaces"?},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {273-298},
     zbl = {0938.46011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv135i3p273bwm}
}
Pietsch, Albrecht. What is "local theory of Banach spaces"?. Studia Mathematica, Tome 133 (1999) pp. 273-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv135i3p273bwm/

[00000] [bea 1] B. Beauzamy, Opérateurs uniformément convexifiants, Studia Math. 57 (1976), 103-139. | Zbl 0372.46016

[00001] [bea 2] B. Beauzamy, Quelques propriétés des opérateurs uniformément convexifiants, ibid. 60 (1977), 211-222. | Zbl 0348.46017

[00002] [b-s] A. Brunel and L. Sucheston, On J-convexity and some ergodic super-properties of Banach spaces, Trans. Amer. Math. Soc. 204 (1975), 79-90.

[00003] [d-k] D. Dacunha-Castelle et J. L. Krivine, Applications des ultraproduits à l'étude des espaces et des algèbres de Banach, Studia Math. 41 (1972), 315-344.

[00004] [g-j] Y. Gordon and M. Junge, Volume ratios in Lp-spaces, Studia Math., to appear. | Zbl 0952.46008

[00005] [gro] A. Grothendieck, Sur certaines classes de suites dans les espaces de Banach, et le théorème de Dvoretzky-Rogers, Bol. Soc. Mat. São Paulo 8 (1956), 81-110.

[00006] [hei 1] S. Heinrich, Finite representability and super-ideals of operators, Dissertationes Math. 172 (1980).

[00007] [hei 2] S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72-104. | Zbl 0412.46017

[00008] [h-k] A. Hinrichs and T. Kaufhold, Distances of finite dimensional subspaces of Lp-spaces, to appear.

[00009] [jam] C. James, Super-reflexive Banach spaces, Canad. J. Math. 24 (1972), 896-904. | Zbl 0222.46009

[00010] [kue] K.-D. Kürsten, On some problems of A. Pietsch, II, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 29 (1978), 61-73 (in Russian).

[00011] [l-m] J. Lindenstrauss and V. D. Milman, The local theory of normed spaces and its applications to convexity, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds.), Elsevier, 1993, 1150-1220. | Zbl 0791.52003

[00012] [p-r] A. Pełczyński and H. P. Rosenthal, Localization techniques in Lp spaces, Studia Math. 52 (1975), 263-289. | Zbl 0297.46023

[00013] [pie] A. Pietsch, Ultraprodukte von Operatoren in Banachräumen, Math. Nachr. 61 (1974), 123-132. | Zbl 0288.47037

[00014] [PIE] A. Pietsch, Operator Ideals, Deutscher Verlag Wiss., Berlin, 1978; North-Holland, Amsterdam, 1980.

[00015] [P-W] A. Pietsch and J. Wenzel, Orthonormal Systems and Banach Space Geometry, Cambridge Univ. Press, 1998. | Zbl 0919.46001

[00016] [ste] J. Stern, Propriétés locales et ultrapuissances d'espaces de Banach, Sém. Maurey-Schwartz 1974/75, Exposés 7 et 8, École Polytechnique, Paris.

[00017] [TOM] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman, Harlow, 1989. | Zbl 0721.46004