Distributional fractional powers of the Laplacean. Riesz potentials
Martínez, Celso ; Sanzi, Miguel ; Periago, Francisco
Studia Mathematica, Tome 133 (1999), p. 253-271 / Harvested from The Polish Digital Mathematics Library

For different reasons it is very useful to have at one’s disposal a duality formula for the fractional powers of the Laplacean, namely, ((-Δ)αu,ϕ)=(u,(-Δ)αϕ), α ∈ ℂ, for ϕ belonging to a suitable function space and u to its topological dual. Unfortunately, this formula makes no sense in the classical spaces of distributions. For this reason we introduce a new space of distributions where the above formula can be established. Finally, we apply this distributional point of view on the fractional powers of the Laplacean to obtain some properties of the Riesz potentials in a wide class of spaces which contains the Lp-spaces.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216654
@article{bwmeta1.element.bwnjournal-article-smv135i3p253bwm,
     author = {Celso Mart\'\i nez and Miguel Sanzi and Francisco Periago},
     title = {Distributional fractional powers of the Laplacean. Riesz potentials},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {253-271},
     zbl = {0948.47019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv135i3p253bwm}
}
Martínez, Celso; Sanzi, Miguel; Periago, Francisco. Distributional fractional powers of the Laplacean. Riesz potentials. Studia Mathematica, Tome 133 (1999) pp. 253-271. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv135i3p253bwm/

[00000] [1] A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math. 10 (1960), 419-437. | Zbl 0103.33502

[00001] [2] P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer, Berlin, 1967. | Zbl 0164.43702

[00002] [3] G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z. 196 (1987), 189-201. | Zbl 0615.47002

[00003] [4] H. O. Fattorini, The Cauchy Problem, Encyclopedia Math. Appl. 18, Addison-Wesley, 1983. | Zbl 0493.34005

[00004] [5] S. Guerre, Some remarks on complex powers of( -Δ ) and UMD spaces, Illinois J. Math. 35 (1991), 401-407. | Zbl 0703.47024

[00005] [6] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ. 31, Providence, 1957. | Zbl 0078.10004

[00006] [7] T. Kato, Note on fractional powers of linear operators, Proc. Japan Acad. 36 (1960), 94-96. | Zbl 0097.31802

[00007] [8] H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285-346. | Zbl 0154.16104

[00008] [9] H. Komatsu, Fractional powers of operators, II. Interpolation spaces, ibid. 21 (1967), 89-111. | Zbl 0168.10702

[00009] [10] H. Komatsu, Fractional powers of operators, III. Negative powers, J. Math. Soc. Japan 21 (1969), 205-220. | Zbl 0181.41003

[00010] [11] C. Martínez and M. Sanz, Fractional powers of non-densely defined operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18 (1991), 443-454. | Zbl 0811.47013

[00011] [12] C. Martínez and M. Sanz, Spectral mapping theorem for fractional powers in locally convex spaces, ibid. 24 (1997), 685-702. | Zbl 0910.47012

[00012] [13] C. Martínez, M. Sanz and V. Calvo, Fractional powers of non-negative operators in Fréchet spaces, Internat. J. Math. Math. Sci. 12 (1989), 309-320. | Zbl 0684.47013

[00013] [14] C. Martínez, M. Sanz and L. Marco, Fractional powers of operators, J. Math. Soc. Japan 40 (1988), 331-347. | Zbl 0628.47006

[00014] [15] J. Prüss and H. Sohr, Imaginary powers of elliptic second order differential operators in Lp-spaces, Hiroshima Math. J. 23 (1993), 161-192. | Zbl 0790.35023

[00015] [16] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.

[00016] [17] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. | Zbl 0207.13501

[00017] [18] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. | Zbl 0387.46033

[00018] [19] J. Watanabe, On some properties of fractional powers of linear operators, Proc. Japan Acad. 37 (1961), 273-275. | Zbl 0109.34002

[00019] [20] K. Yosida, Functional Analysis, Springer, New York, 1980.