Asymptotics for multifractal conservation laws
Biler, Piotr ; Karch, Grzegorz ; Woyczynski, Wojbor
Studia Mathematica, Tome 133 (1999), p. 231-252 / Harvested from The Polish Digital Mathematics Library

We study asymptotic behavior of solutions to multifractal Burgers-type equation ut+f(u)x=Au, where the operator A is a linear combination of fractional powers of the second derivative -2/x2 and f is a polynomial nonlinearity. Such equations appear in continuum mechanics as models with fractal diffusion. The results include decay rates of the Lp-norms, 1 ≤ p ≤ ∞, of solutions as time tends to infinity, as well as determination of two successive terms of the asymptotic expansion of solutions.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216653
@article{bwmeta1.element.bwnjournal-article-smv135i3p231bwm,
     author = {Piotr Biler and Grzegorz Karch and Wojbor Woyczynski},
     title = {Asymptotics for multifractal conservation laws},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {231-252},
     zbl = {0931.35015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv135i3p231bwm}
}
Biler, Piotr; Karch, Grzegorz; Woyczynski, Wojbor. Asymptotics for multifractal conservation laws. Studia Mathematica, Tome 133 (1999) pp. 231-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv135i3p231bwm/

[00000] [1] C. Bardos, P. Penel, U. Frisch and P. L. Sulem, Modified dissipativity for a nonlinear evolution equation arising in turbulence, Arch. Rational Mech. Anal. 71 (1979), 237-256. | Zbl 0421.35037

[00001] [2] P. Biler, T. Funaki and W. A. Woyczynski, Fractal Burgers equations, J. Differential Equations 148 (1998), 9-46. | Zbl 0911.35100

[00002] [3] P. Biler, Interacting particle approximation for nonlocal quadratic evolution problems, submitted. | Zbl 0985.60091

[00003] [4] P. Biler and W. A. Woyczynski, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., to appear. | Zbl 0940.35035

[00004] [5] J. L. Bona, K. S. Promislow and C. E. Wayne, Higher-order asymptotics of decaying solutions of some nonlinear, dispersive, dissipative wave equations, Nonlinearity 8 (1995), 1179-1206. | Zbl 0837.35130

[00005] [6] J. Burgers, The Nonlinear Diffusion Equation, Reidel, Dordrecht, 1974. | Zbl 0302.60048

[00006] [7] A. Carpio, Large-time behavior in incompressible Navier-Stokes equations, SIAM J. Math. Anal. 27 (1996), 449-475. | Zbl 0845.76019

[00007] [8] B. Dix, The dissipation of nonlinear dispersive waves: The case of asymptotically weak nonlinearity, Comm. Partial Differential Equations 17 (1992), 1665-1693. | Zbl 0762.35110

[00008] [9] D. B. Dix, Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation, SIAM J. Math. Anal. 27 (1996), 708-724. | Zbl 0852.35123

[00009] [10] J. Duoandikoetxea et E. Zuazua, Moments, masses de Dirac et décomposition de fonctions, C. R. Acad. Sci. Paris Sér. I 315 (1992), 693-698. | Zbl 0755.45019

[00010] [11] M. Escobedo and E. Zuazua, Large time behavior for convection-diffusion equations in N, J. Funct. Anal. 100 (1991), 119-161. | Zbl 0762.35011

[00011] [12] T. Funaki and W. A. Woyczynski, Interacting particle approximation for fractal Burgers equation, in: Stochastic Processes and Related Topics: In Memory of Stamatis Cambanis 1943-1995, I. Karatzas, B. S. Rajput and M. S. Taqqu (eds.), Birkhäuser, Boston, 1998, 141-166. | Zbl 0931.60087

[00012] [13] G. Karch, Large-time behavior of solutions to nonlinear wave equations: higher-order asymptotics, submitted. | Zbl 0947.35141

[00013] [14] M. Kardar, G. Parisi and Y.-C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889-892. | Zbl 1101.82329

[00014] [15] T. Komatsu, On the martingale problem for generators of stable processes with perturbations, Osaka J. Math. 21 (1984), 113-132. | Zbl 0535.60063

[00015] [16] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, 1988.

[00016] [17] J. A. Mann, Jr. and W. A. Woyczynski, Rough surfaces generated by nonlinear transport, invited paper, Symposium on Non-linear Diffusion, TMS International Meeting, September 1997.

[00017] [18] S. A. Molchanov, D. Surgailis and W. A. Woyczynski, The large-scale structure of the Universe and quasi-Voronoi tessellation of shock fronts in forced Burgers turbulence in d, Ann. Appl. Probab. 7 (1997), 200-228. | Zbl 0895.60066

[00018] [19] P. I. Naumkin and I. A. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves, Transl. Math. Monographs 133, Amer. Math. Soc., Providence, 1994. | Zbl 0802.35002

[00019] [20] A. I. Saichev and W. A. Woyczynski, Distributions in the Physical and Engineering Sciences, Vol. 1, Distributional and Fractal Calculus, Integral Transforms and Wavelets, Birkhäuser, Boston, 1997. | Zbl 0880.46028

[00020] [21] A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: solutions and applications, Chaos 7 (1997), 753-764. | Zbl 0933.37029

[00021] [22] J.-C. Saut, Sur quelques généralisations de l'équation de Korteweg-de Vries, J. Math. Pures Appl. 58 (1979), 21-61. | Zbl 0449.35083

[00022] [23] M. E. Schonbek, Decay of solutions to parabolic conservation laws, Comm. Partial Differential Equations 5 (1980), 449-473. | Zbl 0476.35012

[00023] [24] M. F. Shlesinger, G. M. Zaslavsky and U. Frisch (eds.), Lévy Flights and Related Topics in Physics, Lecture Notes in Phys. 450, Springer, Berlin, 1995.

[00024] [25] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd ed., Springer, Berlin, 1994. | Zbl 0807.35002

[00025] [26] D. W. Stroock, Diffusion processes associated with Lévy generators, Z. Wahrsch. Verw. Gebiete 32 (1975), 209-244. | Zbl 0292.60122

[00026] [27] N. Sugimoto, "Generalized" Burgers equations and fractional calculus, in: Nonlinear Wave Motion, A. Jeffrey (ed.), Longman Sci., Harlow, 1989, 162-179.

[00027] [28] W. A. Woyczynski, Computing with Brownian and Lévy α-stable path integrals, in: 9th 'Aha Huliko'a Hawaiian Winter Workshop "Monte Carlo Simulations in Oceanography" (Hawaii, 1997), P. Müller and D. Henderson (eds.), SOEST, 1997, 91-100.

[00028] [29] W. A. Woyczynski, Burgers-KPZ Turbulence-Göttingen Lectures, Lecture Notes in Math. 1700, Springer, Berlin, 1998.

[00029] [30] E. Zuazua, Weakly nonlinear large time behavior in scalar convection-diffusion equations, Differential Integral Equations 6 (1993), 1481-1491. | Zbl 0805.35054