We prove that the fractional BMO space on a one-dimensional manifold is an interpolation space between C and . We also prove that is an interpolation space between C and . The proof is based on some nonclassical interpolation constructions. The results obtained cannot be transferred to spaces of functions defined on manifolds of higher dimension. The interpolation description of fractional BMO spaces is used at the end of the paper for the proof of the boundedness of commutators of the Hilbert transform.
@article{bwmeta1.element.bwnjournal-article-smv135i3p203bwm, author = {Vladimir Ovchinnikov}, title = {Nonclassical interpolation in spaces of smooth functions}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {203-218}, zbl = {0934.46038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv135i3p203bwm} }
Ovchinnikov, Vladimir. Nonclassical interpolation in spaces of smooth functions. Studia Mathematica, Tome 133 (1999) pp. 203-218. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv135i3p203bwm/
[00000] [1] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. | Zbl 0344.46071
[00001] [2] A. P. Calderón, Commutators, singular integrals on Lipschitz curves and applications, in: Proc. Internat. Congress Math. Helsinki, 1978, Vol. 1, 1980, 85-96.
[00002] [3] Z. Ciesielski and T. Figiel, Spline bases in classical function spaces on compact manifolds, Studia Math. 76 (1983), 1-58. | Zbl 0599.46041
[00003] [4] B. Mitiagin and E. M. Semenov, Absence of interpolation of linear operators in spaces of smooth functions, Izv. Akad. Nauk SSSR 41 (1977), 1229-1266 (in Russian); English transl. Math. USSR-Izv. 11 (1977), 1289-1328. | Zbl 0395.46030
[00004] [5] V. I. Ovchinnikov, Interpolation theorems, resulting from the Grothendieck inequality, Funktsional. Anal. i Prilozhen. 10 (1976), no. 4, 45-54 (in Russian); English transl.: Functional Anal. Appl. 10 (1977), 287-294.
[00005] [6] V. I. Ovchinnikov, The method of orbits in interpolation theory, Math. Reports 1 (1984), 349-516. | Zbl 0875.46007
[00006] [7] V. I. Ovchinnikov, Interpolation properties of fractional BMO space, in: All-Union School on the Theory of Operators in Functional Spaces, Kuῐbyshev, 1988, 142 (in Russian).
[00007] [8] V. I. Ovchinnikov, On reiteration theorems, in: Voronezh Winter Mathematical Schools, P. Kuchment and V. Lin (eds.), Amer. Math. Soc., Providence, R.I., 1998, 185-198. | Zbl 0915.46066
[00008] [9] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., Providence, R.I., 1986.
[00009] [10] A. A. Sedaev, Description of interpolation spaces of the pair and some related questions, Dokl. Akad. Nauk SSSR 209 (1973), 798-800 (in Russian); English transl. in Soviet Math. Dokl. 14 (1973).
[00010] [11] C. Segovia and R. L. Wheeden, Fractional differentiation of the commutator of the Hilbert transform, J. Funct. Anal. 8 (1971), 341-359. | Zbl 0234.44007
[00011] [12] R. S. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (1980), 539-558. | Zbl 0437.46028
[00012] [13] R. S. Strichartz, Traces of BMO-Sobolev spaces, Proc. Amer. Math. Soc. 83 (1981), 509-513. | Zbl 0474.46024
[00013] [14] H. Triebel, The Theory of Function Spaces, Birkhäuser, Basel, 1983. | Zbl 0546.46028