We consider the linear eigenvalue problem -Δu = λV(x)u, , and its nonlinear generalization , . The set Ω need not be bounded, in particular, is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues .
@article{bwmeta1.element.bwnjournal-article-smv135i2p191bwm, author = {Andrzej Szulkin and Michel Willem}, title = {Eigenvalue problems with indefinite weight}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {191-201}, zbl = {0931.35121}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv135i2p191bwm} }
Szulkin, Andrzej; Willem, Michel. Eigenvalue problems with indefinite weight. Studia Mathematica, Tome 133 (1999) pp. 191-201. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv135i2p191bwm/
[00000] [1] W. Allegretto, Principal eigenvalues for indefinite-weight elliptic problems in , Proc. Amer. Math. Soc. 116 (1992), 701-706. | Zbl 0764.35031
[00001] [2] W. Allegretto and Y. X. Huang, Eigenvalues of the indefinite-weight p-Laplacian in weighted spaces, Funkc. Ekvac. 38 (1995), 233-242. | Zbl 0922.35114
[00002] [3] K. J. Brown, C. Cosner and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on , Proc. Amer. Math. Soc. 109 (1990), 147-155. | Zbl 0726.35089
[00003] [4] K. J. Brown and A. Tertikas, The existence of principal eigenvalues for problems with indefinite weight function on , Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 561-569. | Zbl 0804.35095
[00004] [5] J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1 (1993), 151-171. | Zbl 0789.58021
[00005] [6] P. Drábek and Y. X. Huang, Bifurcation problems for the p-Laplacian in , Trans. Amer. Math. Soc. 349 (1997), 171-188. | Zbl 0868.35010
[00006] [7] P. Drábek, Z. Moudan and A. Touzani, Nonlinear homogeneous eigenvalue problem in : nonstandard variational approach, Comm. Math. Univ. Carolin. 38 (1997), 421-431. | Zbl 0940.35150
[00007] [8] J. Fleckinger, R. F. Manásevich, N. M. Stavrakakis and F. de Thélin, Principal eigenvalues for some quasilinear elliptic equations on , Adv. Differential Equations 2 (1997), 981-1003. | Zbl 1023.35505
[00008] [9] J. P. Garcia Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), 441-476.
[00009] [10] Y. X. Huang, Eigenvalues of the p-Laplacian in with indefinite weight, Comm. Math. Univ. Carolin. 36 (1995), 519-527. | Zbl 0839.35097
[00010] [11] D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. 121 (1985), 463-494. | Zbl 0593.35119
[00011] [12] E. H. Lieb and M. Loss, Analysis, Amer. Math. Soc., Providence, R.I., 1997.
[00012] [13] V. G. Maz'ja, Sobolev Spaces, Springer, Berlin, 1985.
[00013] [14] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, R.I., 1986.
[00014] [15] G. Rozenblum and M. Solomyak, On principal eigenvalues for indefinite problems in Euclidean space, Math. Nachr. 192 (1998), 205-223. | Zbl 0908.35085
[00015] [16] M. Struwe, Variational Methods, Springer, Berlin, 1990.
[00016] [17] A. Szulkin, Ljusternik-Schnirelmann theory on -manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 119-139. | Zbl 0661.58009
[00017] [18] A. Tertikas, Critical phenomena in linear elliptic problems, J. Funct. Anal. 154 (1998), 42-66. | Zbl 0920.35044
[00018] [19] M. Willem, Analyse Harmonique Réelle, Hermann, Paris, 1995.
[00019] [20] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.