The boundedness(1 < p < ∞) of Littlewood-Paley’s g-function, Lusin’s S function, Littlewood-Paley’s -functions, and the Marcinkiewicz function is well known. In a sense, one can regard the Marcinkiewicz function as a variant of Littlewood-Paley’s g-function. In this note, we treat counterparts and to S and . The definition of is as follows: , where Ω(x) is a homogeneous function of degree 0 and Lipschitz continuous of order β (0 < β ≤ 1) on the unit sphere , and . We show that if σ = Reϱ > 0, then is bounded for max(1,2n/(n+2σ) < p < ∞, and for 0 < ϱ ≤ n/2 and 1 ≤ p ≤ 2n/(n+2ϱ), then boundedness does not hold in general, in contrast to the case of the S function. Similar results hold for . Their boundedness in the Campanato space is also considered.
@article{bwmeta1.element.bwnjournal-article-smv135i2p103bwm, author = {Minako Sakamoto and K\^oz\^o Yabuta}, title = {Boundedness of Marcinkiewicz functions.}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {103-142}, zbl = {0930.42009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv135i2p103bwm} }
Sakamoto, Minako; Yabuta, Kôzô. Boundedness of Marcinkiewicz functions.. Studia Mathematica, Tome 133 (1999) pp. 103-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv135i2p103bwm/
[00000] [1] A. Benedek, A. P. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-3365. | Zbl 0103.33402
[00001] [2] S. Chanillo and R. L. Wheeden, Some weighted norm inequalities for the area integral, Indiana Univ. Math. J. 36 (1987), 277-294. | Zbl 0598.34019
[00002] [3] Y. S. Han, On some properties of s-function and Marcinkiewicz integrals, Acta Sci. Natur. Univ. Pekinensis 5 (1987), 21-34. | Zbl 0648.35012
[00003] [4] L. Hörmander, Translation invariant operators, Acta Math. 104 (1960), 93-139.
[00004] [5] M. Kaneko and G.-I. Sunouchi, On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions, Tôhoku Math. J. (2) 37 (1985), 343-365. | Zbl 0579.42011
[00005] [6] D. S. Kurtz, Littlewood-Paley operators on BMO, Proc. Amer. Math. Soc. 99 (1987), 657-666.
[00006] [7] S. G. Qiu, Boundedness of Littlewood-Paley operators and Marcinkiewicz integral on , J. Math. Res. Exposition 12 (1992), 41-50. | Zbl 0773.42014
[00007] [8] E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466. | Zbl 0105.05104
[00008] [9] E. M. Stein, Interpolation of linear operators, ibid. 83 (1956), 482-492. | Zbl 0072.32402
[00009] [10] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501
[00010] [11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J. 1971. | Zbl 0232.42007
[00011] [12] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, Calif., 1986. | Zbl 0621.42001
[00012] [13] A. Torchinsky and Shilin Wang, A note on the Marcinkiewicz integral, Colloq. Math. 60/61 (1990), 235-243.
[00013] [14] K. Yabuta, Boundedness of Littlewood-Paley operators, Math. Japon. 43 (1996), 134-150. | Zbl 0843.42008
[00014] [15] Shilin Wang, Boundedness of the Littlewood-Paley g-function on (0 < α < 1), Illinois J. Math. 33 (1989), 531-541. | Zbl 0671.42018
[00015] [16] Silei Wang, Some properties of the Littlewood-Paley g-function, in: Contemp. Math. 42, Amer. Math. Soc., 1985, 191-202.