We introduce and study the spreading-(s) and the spreading-(u) property of a Banach space and their relations. A space has the spreading-(s) property if every normalized weakly null sequence has a subsequence with a spreading model equivalent to the usual basis of ; while it has the spreading-(u) property if every weak Cauchy and non-weakly convergent sequence has a convex block subsequence with a spreading model equivalent to the summing basis of . The main results proved are the following: (a) A Banach space X has the spreading-(s) property if and only if for every subspace Y of X and for every pair of sequences (xn) in Y and in Y*, with(xn) weakly null in Y and uniformly weakly null in Y* (in the sense of Mercourakis), we have (i.e. X has a hereditary weak Dunford-Pettis property). (b) A Banach space X has the spreading-(u) property if and only if in the sense of the classification of Baire-1 elements of X** according to Haydon-Odell-Rosenthal. (c) The spreading-(s) property implies the spreading-(u) property. Result (c), proved via infinite combinations, connects an internal condition on a Banach space with an external one.
@article{bwmeta1.element.bwnjournal-article-smv135i1p83bwm, author = {Vassiliki Farmaki}, title = {On spreading $c\_0$-sequences in Banach spaces}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {83-102}, zbl = {0939.46006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv135i1p83bwm} }
Farmaki, Vassiliki. On spreading $c_0$-sequences in Banach spaces. Studia Mathematica, Tome 133 (1999) pp. 83-102. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv135i1p83bwm/
[00000] [B-L] B. Beauzamy et J.-T. Lapresté, Modèles étalés des espaces de Banach, Hermann, Paris, 1984. | Zbl 0553.46012
[00001] [B-H-O] S. Bellenot, R. Haydon, and E. Odell, Quasi-reflexive and tree spaces constructed in the spirit of R. C. James, in: Contemp. Math. 85, Amer. Math. Soc., 1989, 19-43. | Zbl 0726.46005
[00002] [B-P] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. | Zbl 0084.09805
[00003] [B-S] A. Brunel and L. Sucheston, On B-convex Banach spaces, Math. Systems Theory 7 (1974), 294-299. | Zbl 0323.46018
[00004] [C] P. Cembranos, The hereditary Dunford-Pettis property on C(K,E), Illinois J. Math. 31 (1987), 365-373. | Zbl 0618.46042
[00005] [E] J. Elton, Weakly null normalized sequences in Banach spaces, Doctoral Thesis, Yale University, 1978.
[00006] [E-M] P. Erdős and M. Magidor, A note on regular methods of summability and the Banach-Saks property, Proc. Amer. Math. Soc. 59 (1976), 232-234. | Zbl 0355.40007
[00007] [F1] V. Farmaki, On Baire-1/4 functions and spreading models, Mathematika 41 (1994), 251-265. | Zbl 0848.46006
[00008] [F1] V. Farmaki, Classifications of Baire-1 functions and -spreading models, Trans. Amer. Math. Soc. 345 (1994), 819-831. | Zbl 0867.46014
[00009] [F1] V. Farmaki, On Baire-1/4 functions, ibid. 348 (1996), 4023-4041. | Zbl 0861.46009
[00010] [F-J] T. Figiel and W. B. Johnson, A uniformly convex Banach space which contains no , Compositio Math. 29 (1974), 179-190. | Zbl 0301.46013
[00011] [G-P] F. Galvin, and K. Prikry, Borel sets and Ramsey's theorem, J. Symbolic Logic 38 (1973), 193-198. | Zbl 0276.04003
[00012] [G] S. Guerre-Delabrière, Classical Sequences in Banach Spaces, Monographs and Textbooks Pure Appl. Math. 166, Dekker, 1992. | Zbl 0756.46007
[00013] [H-O-R] R. Haydon, E. Odell and H. Rosenthal, On certain classes of Baire-1 functions with applications to Banach space theory, in: Lecture Notes in Math. 1470, Springer, 1991, 1-35. | Zbl 0762.46006
[00014] [K-P] M. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces , Studia Math. 21 (1962), 161-176. | Zbl 0102.32202
[00015] [K-O] H. Knaust and E. Odell, On -sequences in Banach spaces, Israel J. Math. 67 (1989), 153-169. | Zbl 0731.46007
[00016] [M] S. Mercourakis, On Cesàro summable sequences of continuous functions, Mathematika 42 (1995), 87-104. | Zbl 0826.46001
[00017] [O-1] E. Odell, Applications of Ramsey theorems to Banach space theory, in: Notes in Banach Spaces, H. E. Lacey (ed.), Univ. of Texas Press, 1980, 379-404.
[00018] [O-1] E. Odell, On Schreier unconditional sequences, in: Contemp. Math. 144, Amer. Math. Soc., 1993, 197-201.
[00019] [O-R] E. Odell and H. Rosenthal, A double dual characterization of separable Banach spaces containing , Israel J. Math. 20 (1975), 375-384. | Zbl 0312.46031
[00020] [P] A. Pełczyński, A connection between weakly unconditional convergence and weakly completeness of Banach spaces, Bull. Acad. Polon. Sci. 6 (1958), 251-253. | Zbl 0082.10804
[00021] [R1] H. Rosenthal, Weakly independent sequences and the Banach-Saks property, Bull. London Math. Soc. 8 (1976), 22-24.
[00022] [R1] H. Rosenthal, A characterization of Banach spaces containing , J. Amer. Math. Soc. 7 (1994), 707-748. | Zbl 0824.46010
[00023] [R1] H. Rosenthal, Differences of bounded semi-continuous functions, I, to appear.
[00024] [S] I. Singer, Bases in Banach Spaces I, Springer, 1970. | Zbl 0198.16601
[00025] [T] B. S. Tsirelson, Not every Banach space contains or , Functional Anal. Appl. 8 (1974), 138-141.