Averages of uniformly continuous retractions
Jiménez-Vargas, A. ; Mena-Jurado, J. ; Nahum, R. ; Navarro-Pascual, J.
Studia Mathematica, Tome 133 (1999), p. 75-81 / Harvested from The Polish Digital Mathematics Library

Let X be an infinite-dimensional complex normed space, and let B and S be its closed unit ball and unit sphere, respectively. We prove that the identity map on B can be expressed as an average of three uniformly retractions of B onto S. Moreover, for every 0≤ r < 1, the three retractions are Lipschitz on rB. We also show that a stronger version where the retractions are required to be Lipschitz does not hold.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216644
@article{bwmeta1.element.bwnjournal-article-smv135i1p75bwm,
     author = {A. Jim\'enez-Vargas and J. Mena-Jurado and R. Nahum and J. Navarro-Pascual},
     title = {Averages of uniformly continuous retractions},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {75-81},
     zbl = {0960.46012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv135i1p75bwm}
}
Jiménez-Vargas, A.; Mena-Jurado, J.; Nahum, R.; Navarro-Pascual, J. Averages of uniformly continuous retractions. Studia Mathematica, Tome 133 (1999) pp. 75-81. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv135i1p75bwm/

[00000] [1] Y. Benyamini and Y. Sternfeld, Spheres in infinite dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983), 439-445.

[00001] [2] V. Bogachev, J. F. Mena-Jurado and J. C. Navarro-Pascual, Extreme points in spaces of continuous functions, ibid. 123 (1995), 1061-1067. | Zbl 0832.46030

[00002] [3] J. Cantwell, A topological approach to extreme points in function spaces, ibid. 19 (1968), 821-825. | Zbl 0175.13403

[00003] [4] A. Jiménez-Vargas, J. F. Mena-Jurado and J. C. Navarro-Pascual, Complex extremal structure in spaces of continuous functions, J. Math. Anal. Appl. 211 (1997), 605-615. | Zbl 0920.46028

[00004] [5] P. K. Lin and Y. Sternfeld, Convex sets with the Lipschitz fixed point property are compact, Proc. Amer. Math. Soc. 93 (1985) 633-639. | Zbl 0566.47039

[00005] [6] J. C. Navarro-Pascual, Extreme points and retractions in Banach spaces, Israel J. Math. 99 (1997), 335-342. | Zbl 0901.46015

[00006] [7] B. Nowak, On the Lipschitzian retraction of the unit ball in infinite-dimensional Banach spaces onto its boundary, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 861-864. | Zbl 0472.54008

[00007] [8] N. T. Peck, Extreme points and dimension theory, Pacific J. Math. 25 (1968), 341-351. | Zbl 0157.29603