Interpolation of the measure of non-compactness by the real method
Cobos, Fernando ; Fernández-Martínez, Pedro ; Martínez, Antón
Studia Mathematica, Tome 133 (1999), p. 25-38 / Harvested from The Polish Digital Mathematics Library

We investigate the behaviour of the measure of non-compactness of an operator under real interpolation. Our results refer to general Banach couples. An application to the essential spectral radius of interpolated operators is also given.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216641
@article{bwmeta1.element.bwnjournal-article-smv135i1p25bwm,
     author = {Fernando Cobos and Pedro Fern\'andez-Mart\'\i nez and Ant\'on Mart\'\i nez},
     title = {Interpolation of the measure of non-compactness by the real method},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {25-38},
     zbl = {0939.46017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv135i1p25bwm}
}
Cobos, Fernando; Fernández-Martínez, Pedro; Martínez, Antón. Interpolation of the measure of non-compactness by the real method. Studia Mathematica, Tome 133 (1999) pp. 25-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv135i1p25bwm/

[00000] [1] E. Albrecht, Spectral interpolation, in: Oper. Theory Adv. Appl. 14, Birkhäuser, Basel, 1984.

[00001] [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. | Zbl 0344.46071

[00002] [3] B. Carl and I. Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge Univ. Press, Cambridge, 1990.

[00003] [4] F. Cobos, D. E. Edmunds and A. J. B. Potter, Real interpolation and compact linear operators, J. Funct. Anal. 88 (1990), 351-365. | Zbl 0704.46049

[00004] [5] F. Cobos, T. Kühn and T. Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors, ibid. 106 (1992), 274-313. | Zbl 0787.46061

[00005] [6] F. Cobos and J. Peetre, Interpolation of compactness using Aronszajn-Gagliardo functors, Israel J. Math. 68 (1989), 220-240. | Zbl 0716.46054

[00006] [7] F. Cobos and J. Peetre, Interpolation of compact operators: The multidimensional case, Proc. London Math. Soc. 63 (1991), 371-400. | Zbl 0702.46047

[00007] [8] F. Cobos and L. E. Persson, Real interpolation of compact operators between quasi-Banach spaces, Math. Scand. 82 (1998), 138-160. | Zbl 0921.46084

[00008] [9] M. Cwikel, Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65 (1992), 333-343. | Zbl 0787.46062

[00009] [10] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987. | Zbl 0628.47017

[00010] [11] M. A. Krasnosel'skiĭ, On a theorem of M. Riesz, Soviet Math. Dokl. 1 (1960), 229-231.

[00011] [12] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, E. I. Pustyl'nik and P. E. Sobolevskiĭ, Integral Operators in Spaces of Summable Functions, Noordhoff, Leiden, 1976.

[00012] [13] R. D. Nussbaum, The radius of the essential spectrum, Duke Math. J. 37 (1970), 473-479. | Zbl 0216.41602

[00013] [14] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.

[00014] [15] M. F. Teixeira and D. E. Edmunds, Interpolation theory and measures of non-compactness, Math. Nachr. 104 (1981), 129-135. | Zbl 0492.46062

[00015] [16] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. | Zbl 0387.46033