Normal Hilbert modules over the ball algebra A(B)
Guo, Kunyu
Studia Mathematica, Tome 133 (1999), p. 1-12 / Harvested from The Polish Digital Mathematics Library

The normal cohomology functor Ext is introduced from the category of all normal Hilbert modules over the ball algebra to the category of A(B)-modules. From the calculation of Ext-groups, we show that every normal C(∂B)-extension of a normal Hilbert module (viewed as a Hilbert module over A(B) is normal projective and normal injective. It follows that there is a natural isomorphism between Hom of normal Shilov modules and that of their quotient modules, which is a new lifting theorem of normal Shilov modules. Finally, these results are applied to the discussion of rigidity and extensions of Hardy submodules over the ball algebra.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216640
@article{bwmeta1.element.bwnjournal-article-smv135i1p1bwm,
     author = {Kunyu Guo},
     title = {Normal Hilbert modules over the ball algebra A(B)},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {1-12},
     zbl = {0944.46050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv135i1p1bwm}
}
Guo, Kunyu. Normal Hilbert modules over the ball algebra A(B). Studia Mathematica, Tome 133 (1999) pp. 1-12. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv135i1p1bwm/

[00000] [1] J. F. Carlson and D. N. Clark, Cohomology and extensions of Hilbert modules, J. Funct. Anal. 128 (1995), 278-306. | Zbl 0833.46038

[00001] [2] J. F. Carlson, D. N. Clark, C. Foiaş and J. P. Williams, Projective Hilbert A(D)-modules, New York J. Math. 1 (1994), 26-38. | Zbl 0812.46043

[00002] [3] X. M. Chen and R. G. Douglas, Rigidity of Hardy submodules on the unit ball, Houston J. Math. 18 (1992), 117-125. | Zbl 0762.46048

[00003] [4] X. M. Chen and K. Y. Guo, Cohomology and extensions of hypo-Shilov modules over the unit modulus algebras, J. Operator Theory, to appear.

[00004] [5] J. B. Cole and T. W. Gamelin, Tight uniform algebras and algebras of analytic functions, J. Funct. Anal. 46 (1982), 158-220. | Zbl 0569.46034

[00005] [6] R. G. Douglas and V. I. Paulsen, Hilbert Modules over Function Algebras, Longman Sci. Tech., New York, 1989.

[00006] [7] P. J. Hilton and U. Stammbach, A Course in Homological Algebra, Springer, New York, 1970. | Zbl 0863.18001

[00007] [8] N. P. Jewell, Multiplication by the coordinate functions on the Hardy space of the unit sphere of n, Duke Math. J. 44 (1977), 839-851. | Zbl 0372.47016

[00008] [9] S. G. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982. | Zbl 0471.32008

[00009] [10] E. Løw, Inner functions and boundary values in H(Ω) and in smoothly bounded pseudoconvex domains, Math. Z. 185 (1984), 191-210. | Zbl 0526.32017

[00010] [11] A. T. Paterson, Amenability, Math. Surveys Monographs 28, Amer. Math. Soc., 1988.

[00011] [12] W. Rudin, New constructions of functions holomorphic in the unit ball of Cn, CBMS Regional Conf. Ser. in Math. 63, Amer. Math. Soc., 1986.