The normal cohomology functor is introduced from the category of all normal Hilbert modules over the ball algebra to the category of A(B)-modules. From the calculation of -groups, we show that every normal C(∂B)-extension of a normal Hilbert module (viewed as a Hilbert module over A(B) is normal projective and normal injective. It follows that there is a natural isomorphism between Hom of normal Shilov modules and that of their quotient modules, which is a new lifting theorem of normal Shilov modules. Finally, these results are applied to the discussion of rigidity and extensions of Hardy submodules over the ball algebra.
@article{bwmeta1.element.bwnjournal-article-smv135i1p1bwm, author = {Kunyu Guo}, title = {Normal Hilbert modules over the ball algebra A(B)}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {1-12}, zbl = {0944.46050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv135i1p1bwm} }
Guo, Kunyu. Normal Hilbert modules over the ball algebra A(B). Studia Mathematica, Tome 133 (1999) pp. 1-12. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv135i1p1bwm/
[00000] [1] J. F. Carlson and D. N. Clark, Cohomology and extensions of Hilbert modules, J. Funct. Anal. 128 (1995), 278-306. | Zbl 0833.46038
[00001] [2] J. F. Carlson, D. N. Clark, C. Foiaş and J. P. Williams, Projective Hilbert A(D)-modules, New York J. Math. 1 (1994), 26-38. | Zbl 0812.46043
[00002] [3] X. M. Chen and R. G. Douglas, Rigidity of Hardy submodules on the unit ball, Houston J. Math. 18 (1992), 117-125. | Zbl 0762.46048
[00003] [4] X. M. Chen and K. Y. Guo, Cohomology and extensions of hypo-Shilov modules over the unit modulus algebras, J. Operator Theory, to appear.
[00004] [5] J. B. Cole and T. W. Gamelin, Tight uniform algebras and algebras of analytic functions, J. Funct. Anal. 46 (1982), 158-220. | Zbl 0569.46034
[00005] [6] R. G. Douglas and V. I. Paulsen, Hilbert Modules over Function Algebras, Longman Sci. Tech., New York, 1989.
[00006] [7] P. J. Hilton and U. Stammbach, A Course in Homological Algebra, Springer, New York, 1970. | Zbl 0863.18001
[00007] [8] N. P. Jewell, Multiplication by the coordinate functions on the Hardy space of the unit sphere of , Duke Math. J. 44 (1977), 839-851. | Zbl 0372.47016
[00008] [9] S. G. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982. | Zbl 0471.32008
[00009] [10] E. Løw, Inner functions and boundary values in and in smoothly bounded pseudoconvex domains, Math. Z. 185 (1984), 191-210. | Zbl 0526.32017
[00010] [11] A. T. Paterson, Amenability, Math. Surveys Monographs 28, Amer. Math. Soc., 1988.
[00011] [12] W. Rudin, New constructions of functions holomorphic in the unit ball of , CBMS Regional Conf. Ser. in Math. 63, Amer. Math. Soc., 1986.