The topology and the structure of the set of the canonical extensions of positive, weakly continuous functionals from a von Neumann subalgebra to a von Neumann algebra M are described.
@article{bwmeta1.element.bwnjournal-article-smv135i1p13bwm, author = {Carlo Cecchini}, title = {Canonical functional extensions on von Neumann algebras}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {13-24}, zbl = {0945.46045}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv135i1p13bwm} }
Cecchini, Carlo. Canonical functional extensions on von Neumann algebras. Studia Mathematica, Tome 133 (1999) pp. 13-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv135i1p13bwm/
[00000] [1] L. Accardi and C. Cecchini, Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Anal. 45 (1982), 245-273. | Zbl 0483.46043
[00001] [2] H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a noncommutative Radon-Nikodym theorem with a chain rule, Pacific J. Math. 50 (1974), 309-354. | Zbl 0287.46074
[00002] [3] C. Cecchini, An abstract characterization of ω-conditional expectations, Math. Scand. 66 (1990), 155-160. | Zbl 0748.46033
[00003] [4] C. Cecchini and D. Petz, State extensions and a Radon-Nikodym theorem for conditional expectations on von Neumann algebras, Pacific J. Math. 138 (1989), 9-23.
[00004] [5] C. Cecchini and D. Petz, Classes of conditional expectations over von Neumann algebras, J. Funct. Anal. 92 (1990), 8-29.
[00005] [6] F. Combes et C. Delaroche, Groupe modulaire d'une espérance conditionnelle dans une algèbre de von Neumann, Bull. Soc. Math. France 103 (1975), 385-426 (1976). | Zbl 0321.46050
[00006] [7] A. Connes, Sur le théorème de Radon-Nikodym pour les poids normaux fidèles semifinis, ibid. 97 (1973), 253-258.