Let E be a real, separable Banach space and denote by the space of all E-valued random vectors defined on the probability space Ω. The following result is proved. There exists an extension of Ω, and a filtration on , such that for every there is an E-valued, continuous -martingale in which X is embedded in the sense that a.s. for an a.s. finite stopping time τ. For E = ℝ this gives a Skorokhod embedding for all , and for general E this leads to a representation of random vectors as stochastic integrals relative to a Brownian motion.
@article{bwmeta1.element.bwnjournal-article-smv134i3p251bwm, author = {E. Dettweiler}, title = {Embedding of random vectors into continuous martingales}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {251-268}, zbl = {0924.60017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i3p251bwm} }
Dettweiler, E. Embedding of random vectors into continuous martingales. Studia Mathematica, Tome 133 (1999) pp. 251-268. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i3p251bwm/
[00000] [1] J. Azéma et M. Yor, Une solution simple au problème de Skorohod, in: Séminaire de Probabilités XIII, Lecture Notes in Math. 721, Springer, 1979, 90-115 and 625-633. | Zbl 0414.60055
[00001] [2] R. Chacon and J. B. Walsh, One-dimensional potential embedding, in: Séminaire de Probabilités X, Lecture Notes in Math. 511, Springer, 1976, 19-23. | Zbl 0329.60041
[00002] [3] E. Dettweiler, Banach space valued processes with independent increments and stochastic integration, in: Probability in Banach Spaces IV, Lecture Notes in Math. 990, Springer, 1983, 54-83. | Zbl 0514.60010
[00003] [4] E. Dettweiler, Stochastic integration of Banach space valued functions, in: L. Arnold and P. Kotelenez (eds.), Stochastic Space-Time Models and Limit Theorems, Reidel, 1985, 53-79.
[00004] [5] L. Dubins, On a theorem of Skorohod, Ann. Math. Statist. 39 (1968), 2094-2097. | Zbl 0185.45103
[00005] [6] L. Dubins and G. Schwarz, On continuous martingales, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 913-916. | Zbl 0203.17504
[00006] [7] R. M. Dudley, Wiener functionals as Itô integrals, Ann. Probab. 5 (1977), 140-141. | Zbl 0359.60071
[00007] [8] R. M. Dudley, Real Analysis and Probability, Wadsworth & Brooks-Cole, 1989. | Zbl 0686.60001
[00008] [9] J. Hoffmann - Jοrgensen, Probability in Banach spaces, in: Ecole d'Eté de Probabilités de Saint-Flour VI, Lecture Notes in Math. 598, Springer, 1977, 1-186.
[00009] [10] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, l988. | Zbl 0734.60060
[00010] [11] A. V. Skorohod [A. V. Skorokhod], Studies in the Theory of Random Processes, Addison-Wesley, 1965.