On the representation of functions by orthogonal series in weighted Lp spaces
Grigorian, M.
Studia Mathematica, Tome 133 (1999), p. 207-216 / Harvested from The Polish Digital Mathematics Library

It is proved that if φn is a complete orthonormal system of bounded functions and ɛ>0, then there exists a measurable set E ⊂ [0,1] with measure |E|>1-ɛ, a measurable function μ(x), 0 < μ(x) ≤ 1, μ(x) ≡ 1 on E, and a series of the form k=1ckφk(x), where cklq for all q>2, with the following properties: 1. For any p ∈ [1,2) and fLμp[0,1]=f:ʃ01|f(x)|pμ(x)dx< there are numbers ɛk, k=1,2,…, ɛk = 1 or 0, such that limnʃ01|k=1nɛkckφk(x)-f(x)|pμ(x)dx=0. 2. For every p ∈ [1,2) and fLμp[0,1] there are a function gL1[0,1] with g(x) = f(x) on E and numbers δk, k=1,2,…, δk=1 or 0, such that limnʃ01|k=1nδkckφk(x)-g(x)|pμ(x)dx=0, where δkck=ʃ01g(t)φk(t)dt.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216634
@article{bwmeta1.element.bwnjournal-article-smv134i3p207bwm,
     author = {M. Grigorian},
     title = {On the representation of functions by orthogonal series in weighted $L^p$ spaces},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {207-216},
     zbl = {0917.42030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i3p207bwm}
}
Grigorian, M. On the representation of functions by orthogonal series in weighted $L^p$ spaces. Studia Mathematica, Tome 133 (1999) pp. 207-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i3p207bwm/

[00000] [1] N. K. Bari, Trigonometric Series, Fizmatgiz, Moscow, 1961 (in Russian).

[00001] [2] M. G. Grigorian, On convergence of Fourier series in complete orthonormal systems in the L1 metric and almost everywhere, Mat. Sb. 181 (1990), 1011-1030 (in Russian); English transl.: Math. USSR-Sb. 70 (1991), 445-466.

[00002] [3] M. G. Grigorian, On the convergence of Fourier series in the metric of L1, Anal. Math. 17 (1991), 211-237. | Zbl 0754.42006

[00003] [4] M. G. Grigorian, On some properties of orthogonal systems, Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), no. 5, 75-105.

[00004] [5] N. N. Luzin, On the fundamental theorem of the integral calculus, Mat. Sb. 28 (1912), 266-294 (in Russian).

[00005] [6] D. E. Men'shov, On Fourier series of integrable functions, Trudy Moskov. Mat. Obshch. 1 (1952), 5-38.