Using results on the reflexive algebra with two invariant subspaces, we calculate the hyperreflexivity constant for this algebra when the Hilbert space is two-dimensional. Then by the continuity of the angle for two subspaces, there exists a non-CSL hyperreflexive algebra with hyperreflexivity constant C for every C>1. This result leads to a kind of continuity for the hyperreflexivity constant.
@article{bwmeta1.element.bwnjournal-article-smv134i3p203bwm, author = {Satoru Tosaka}, title = {A note on the hyperreflexivity constant for certain reflexive algebras}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {203-206}, zbl = {0927.47045}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i3p203bwm} }
Tosaka, Satoru. A note on the hyperreflexivity constant for certain reflexive algebras. Studia Mathematica, Tome 133 (1999) pp. 203-206. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i3p203bwm/
[00000] [1] M. Anoussis, A. Katavolos and M. S. Lambrou, On the reflexive algebra with two invariant subspaces, J. Operator Theory 30 (1993), 267-299. | Zbl 0840.47035
[00001] [2] W. Argyros, M. S. Lambrou and W. Longstaff, Atomic Boolean subspace lattices and applications to the theory of bases, Mem. Amer. Math. Soc. 445 (1991). | Zbl 0738.47047
[00002] [3] W. Arveson, Ten Lectures on Operator Algebras, CBMS Regional Conf. Ser. in Math. 55, Amer. Math. Soc., Providence, 1984.
[00003] [4] A. Katavolos, M. S. Lambrou and W. Longstaff, The decomposability of operators relative to two subspaces, Studia Math. 105 (1993), 25-36. | Zbl 0810.47037
[00004] [5] M. S. Lambrou and W. Longstaff, Unit ball density and the operator equation AX=YB, J. Operator Theory 25 (1991), 383-397. | Zbl 0806.47015
[00005] [6] M. Papadakis, On hyperreflexivity and rank one density for non-CSL algebras, Studia Math. 98 (1991), 11-17. | Zbl 0755.47030