Maps on matrices that preserve the spectral radius distance
Bhatia, Rajendra ; Šemrl, Peter ; Sourour, A.
Studia Mathematica, Tome 133 (1999), p. 99-110 / Harvested from The Polish Digital Mathematics Library

Let ϕ be a surjective map on the space of n×n complex matrices such that r(ϕ(A)-ϕ(B))=r(A-B) for all A,B, where r(X) is the spectral radius of X. We show that ϕ must be a composition of five types of maps: translation, multiplication by a scalar of modulus one, complex conjugation, taking transpose and (simultaneous) similarity. In particular, ϕ is real linear up to a translation.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216632
@article{bwmeta1.element.bwnjournal-article-smv134i2p99bwm,
     author = {Rajendra Bhatia and Peter \v Semrl and A. Sourour},
     title = {Maps on matrices that preserve the spectral radius distance},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {99-110},
     zbl = {0927.15006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p99bwm}
}
Bhatia, Rajendra; Šemrl, Peter; Sourour, A. Maps on matrices that preserve the spectral radius distance. Studia Mathematica, Tome 133 (1999) pp. 99-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p99bwm/

[00000] [1] R. Bhatia and P. Šemrl, Approximate isometries on Euclidean spaces, Amer. Math. Monthly 104 (1997), 497-504. | Zbl 0901.46016

[00001] [2] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261. | Zbl 0589.47003

[00002] [3] M. Jerison, The space of bounded maps into a Banach space, Ann. of Math. 52 (1950), 307-327. | Zbl 0038.27301

[00003] [4] S. Mazur et S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946-948. | Zbl 58.0423.01

[00004] [5] P. Šemrl, Linear maps that preserve the nilpotent operators, Acta Sci. Math. (Szeged) 61 (1995), 523-534. | Zbl 0843.47024