We show that a positive semigroup on with generator A and ||R(α + i β)|| → 0 as |β| → ∞ for some α ∈ ℝ is continuous in the operator norm for t>0. The proof is based on a criterion for norm continuity in terms of “smoothing properties” of certain convolution operators on general Banach spaces and an extrapolation result for the -scale, which may be of independent interest.
@article{bwmeta1.element.bwnjournal-article-smv134i2p169bwm, author = {V. Goersmeyer and L. Weis}, title = {Norm continuity of $c\_0$-semigroups}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {169-178}, zbl = {0940.47033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p169bwm} }
Goersmeyer, V.; Weis, L. Norm continuity of $c_0$-semigroups. Studia Mathematica, Tome 133 (1999) pp. 169-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p169bwm/
[00000] [1] H. Alt, Lineare Funktionalanalysis, Springer, Berlin, 1992.
[00001] [2] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. | Zbl 0344.46071
[00002] [3] E. B. Davies, One-Parameter Semigroups, Academic Press, London, 1980. | Zbl 0457.47030
[00003] [4] A. Driouich and O. El-Mennaoui, On the inverse formula of Laplace transforms, preprint.
[00004] [5] O. El-Mennaoui and K. J. Engel, On the characterization of eventually norm continuous semigroups in Hilbert space. Arc. Math. (Basel) 63 (1994), 437-440. | Zbl 0811.47035
[00005] [6] O. El-Mennaoui and K. J. Engel, Towards a characterization of eventually norm continuous semigroups on Banach spaces, Quaestiones Math. 19 (1996), 183-190. | Zbl 0863.47022
[00006] [7] J. Martinez and J. Mazon, -semigroups norm continuous at infinity, Semigroup Forum 52 (1996), 213-224. | Zbl 0927.47029
[00007] [8] J. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Birkhäuser, Basel, 1996. | Zbl 0905.47001
[00008] [9] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
[00009] [10] L. Weis, A short proof for the stability theorem for positive semigroups on , Proc. Amer. Math. Soc. (1998), to appear. | Zbl 0904.47028
[00010] [11] L. Weis, Integral operators and changes of density, Indiana Univ. Math. J. 31 (1982), 83-96. | Zbl 0492.47017
[00011] [12] P. You, Characteristic conditions for -semigroups with continuity in the uniform operator topology for t>0, Proc. Amer. Math. Soc. 116 (1992), 991-997. | Zbl 0773.47023