Spectral localization, power boundedness and invariant subspaces under Ritt's type condition
Lyubich, Yu.
Studia Mathematica, Tome 133 (1999), p. 153-167 / Harvested from The Polish Digital Mathematics Library

For a bounded linear operator T in a Banach space the Ritt resolvent condition Rλ(T)C/|λ-1| (|λ| > 1) can be extended (changing the constant C) to any sector |arg(λ - 1)| ≤ π - δ, arccos(C-1)<δ<π/2. This implies the power boundedness of the operator T. A key result is that the spectrum σ(T) is contained in a special convex closed domain. A generalized Ritt condition leads to a similar localization result and then to a theorem on invariant subspaces.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216629
@article{bwmeta1.element.bwnjournal-article-smv134i2p153bwm,
     author = {Yu. Lyubich},
     title = {Spectral localization, power boundedness and invariant subspaces under Ritt's type condition},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {153-167},
     zbl = {0945.47005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p153bwm}
}
Lyubich, Yu. Spectral localization, power boundedness and invariant subspaces under Ritt's type condition. Studia Mathematica, Tome 133 (1999) pp. 153-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p153bwm/

[00000] [1] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, 1962. | Zbl 0117.34001

[00001] [2] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. | Zbl 0611.47005

[00002] [3] Yu. Lyubich and V. Matsaev, Operators with separable spectrum, in: Amer. Math. Soc. Transl. (2) 47 (1965), 89-129. | Zbl 0158.14602

[00003] [4] B. Nagy and J. Zemánek, A resolvent condition implying power boundedness, Studia Math. 134 (1999), 143-151. | Zbl 0934.47002

[00004] [5] O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, 1993.

[00005] [6] R. K. Ritt, A condition that limnn-1Tn=0, Proc. Amer. Math. Soc. 4 (1953), 898-899. | Zbl 0052.12501

[00006] [7] J. G. Stampfli, A local spectral theory for operators IV; Invariant subspaces, Indiana Univ. Math. J. 22 (1972), 159-167. | Zbl 0254.47007

[00007] [8] E. Tadmor, The resolvent condition and uniform power boundedness, Linear Algebra Appl. 80 (1986), 250-252.