The Ritt and Kreiss resolvent conditions are related to the behaviour of the powers and their various means. In particular, it is shown that the Ritt condition implies the power boundedness. This improves the Nevanlinna characterization of the sublinear decay of the differences of the consecutive powers in the Esterle-Katznelson-Tzafriri theorem, and actually characterizes the analytic Ritt condition by two geometric properties of the powers.
@article{bwmeta1.element.bwnjournal-article-smv134i2p143bwm, author = {B\'ela Nagy and Jaroslav Zem\'anek}, title = {A resolvent condition implying power boundedness}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {143-151}, zbl = {0934.47002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p143bwm} }
Nagy, Béla; Zemánek, Jaroslav. A resolvent condition implying power boundedness. Studia Mathematica, Tome 133 (1999) pp. 143-151. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p143bwm/
[00000] [A1] G. R. Allan, Sums of idempotents and a lemma of N. J. Kalton, Studia Math. 121 (1996), 185-192. | Zbl 0862.46029
[00001] [A2] G. R. Allan, Power-bounded elements and radical Banach algebras, in: Linear Operators, J. Janas, F. H. Szafraniec and J. Zemánek (eds.), Banach Center Publ. 38, Inst. Math., Polish Acad. Sci., 1997, 9-16. | Zbl 0884.47003
[00002] [ARa] G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79. | Zbl 0705.46021
[00003] [D] N. Dunford, Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. | Zbl 0063.01185
[00004] [EHP] P. Erdős, F. Herzog and G. Piranian, On Taylor series of functions regular in Gaier regions, Arch. Math. (Basel) 5 (1954), 39-52. | Zbl 0055.06802
[00005] [Es] J. Esterle, Quasimultipliers, representations of , and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity (Long Beach, Calif., 1981), J. M. Bachar, W. G. Bade, P. C. Curtis Jr., H. G. Dales, and M. P. Thomas (eds.), Lecture Notes in Math. 975, Springer, 1983, 66-162.
[00006] [F] H. O. Fattorini, The Cauchy Problem, Addison-Wesley, Reading, Mass., 1983. | Zbl 0493.34005
[00007] [Go] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Univ. Press, New York, 1985.
[00008] [GHu] J. J. Grobler and C. B. Huijsmans, Doubly Abel bounded operators with single spectrum, Quaestiones Math. 18 (1995), 397-406. | Zbl 0841.46034
[00009] [Ha] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, 1967.
[00010] [Hi] E. Hille, Remarks on ergodic theorems, Trans. Amer. Math. Soc. 57 (1945), 246-269. | Zbl 0063.02017
[00011] [KT] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. | Zbl 0611.47005
[00012] [Ki] J. Kisyński, On resolvents and semigroups associated with the Dirichlet problem for an elliptic differential operator of second order with a Lévy perturbation, Wydawnictwa Uczelniane Politechniki Lubelskiej, Politechnika Lubelska, Lublin, 1998.
[00013] [L] Yu. Lyubich, Spectral localization, power boundedness and invariant subspaces under Ritt's type condition, Studia Math. 134 (1999), 153-167. | Zbl 0945.47005
[00014] [LZ] Yu. Lyubich and J. Zemánek, Precompactness in the uniform ergodic theory, ibid. 112 (1994), 89-97. | Zbl 0817.47014
[00015] [MZ] M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.
[00016] [N1] O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, 1993.
[00017] [N2] O. Nevanlinna, On the growth of the resolvent operators for power bounded operators, in: Linear Operators, J. Janas, F. H. Szafraniec and J. Zemánek (eds.), Banach Center Publ. 38, Inst. Math., Polish Acad. Sci., 1997, 247-264. | Zbl 0913.47004
[00018] [Pa] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. | Zbl 0516.47023
[00019] [PóS] G. Pólya und G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Springer, Berlin, 1964.
[00020] [Py] T. Pytlik, Analytic semigroups in Banach algebras and a theorem of Hille, Colloq. Math. 51 (1987), 287-294. | Zbl 0632.46043
[00021] [R] R. K. Ritt, A condition that , Proc. Amer. Math. Soc. 4 (1953), 898-899. | Zbl 0052.12501
[00022] [Rö1] H. C. Rönnefarth, On properties of the powers of a bounded linear operator and their characterization by its spectrum and resolvent, Dissertation, Technische Universität Berlin, Berlin, 1996.
[00023] [Rö2] H. C. Rönnefarth, On the differences of the consecutive powers of Banach algebra elements, in: Linear Operators, J. Janas, F. H. Szafraniec and J. Zemánek (eds.), Banach Center Publ. 38, Inst. Math., Polish Acad. Sci., 1997, 297-314. | Zbl 0892.46058
[00024] [Sh] A. L. Shields, On Möbius bounded operators, Acta Sci. Math. (Szeged) 40 (1978), 371-374. | Zbl 0358.47025
[00025] [StW] J. C. Strikwerda and B. A. Wade, A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions, in: Linear Operators, J. Janas, F. H. Szafraniec and J. Zemánek (eds.), Banach Center Publ. 38, Inst. Math., Polish Acad. Sci., 1997, 339-360. | Zbl 0877.15029
[00026] [Św] A. Święch, A note on the differences of the consecutive powers of operators, ibid., 381-383.
[00027] [Tad] E. Tadmor, The resolvent condition and uniform power-boundedness, Linear Algebra Appl. 80 (1986), 250-252.
[00028] [TaY] K. Tanahashi and S. Yamagami, Spectral inclusion relations for T, T|Y, and T/Y, Proc. Amer. Math. Soc. 116 (1992), 763-768. | Zbl 0777.47004
[00029] [Tay] A. E. Taylor, Introduction to Functional Analysis, Wiley, New York, 1958.
[00030] [V] G. Valiron, Fonctions Analytiques, Presses Universitaires de France, Paris, 1954.
[00031] [Z1] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, J. Zemánek (ed.), Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 369-385. | Zbl 0822.47005
[00032] [Z2] J. Zemánek, Problem, in: Banach Algebras '97, Proc. 13th Internat. Conf. on Banach Algebras (Blaubeuren, 1997), E. Albrecht and M. Mathieu (eds.), de Gruyter, Berlin, 1998, 560.