For the Abel equation on a real-analytic manifold a dynamical criterion of solvability in real-analytic functions is proved.
@article{bwmeta1.element.bwnjournal-article-smv134i2p135bwm, author = {G. Belitskii and Yu. Lyubich}, title = {The real-analytic solutions of the Abel functional equation}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {135-141}, zbl = {0924.39012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p135bwm} }
Belitskii, G.; Lyubich, Yu. The real-analytic solutions of the Abel functional equation. Studia Mathematica, Tome 133 (1999) pp. 135-141. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p135bwm/
[00000] [1] G. Belitskii and Yu. Lyubich, The Abel equation and total solvability of linear functional equations, Studia Math. 127 (1998), 81-97. | Zbl 0889.39017
[00001] [2] D. Fuks and V. Rokhlin, The First Course in Topology, Nauka, Moscow, 1977 (in Russian). | Zbl 0417.55002
[00002] [3] M. W. Hirsch, Differential Topology, Springer, New York, 1976.
[00003] [4] S.-T. Hu, Homotopy Theory, Academic Press, New York, 1959.