We construct k-dimensional (k ≥ 3) subspaces of , with a very simple structure and with projection constant satisfying .
@article{bwmeta1.element.bwnjournal-article-smv134i2p119bwm, author = {Bruce Chalmers and Grzegorz Lewicki}, title = {Symmetric subspaces of $l\_1$ with large projection constants}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {119-133}, zbl = {0926.41018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p119bwm} }
Chalmers, Bruce; Lewicki, Grzegorz. Symmetric subspaces of $l_1$ with large projection constants. Studia Mathematica, Tome 133 (1999) pp. 119-133. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p119bwm/
[00000] [CHFG] B. L. Chalmers, C. Franchetti and M. Giaquinta, On the self-length of two-dimensional Banach spaces, Bull. Austral. Math. Soc. 53 (1996), 101-107. | Zbl 0854.46012
[00001] [CHM1] B. L. Chalmers and F. T. Metcalf, The determination of minimal projections and extensions in , Trans. Amer. Math. Soc. 329 (1992), 289-305. | Zbl 0753.41018
[00002] [CHM2] B. L. Chalmers and F. T. Metcalf, A characterization and equations for minimal projections and extensions, J. Operator Theory 32 (1994), 31-46. | Zbl 0827.41016
[00003] [CHPS] B. L. Chalmers, K. C. Pan and B. Shekhtman, When is the adjoint of a minimal projection also minimal, in: Approximation Theory (Memphis, Tenn., 1991), Lecture Notes in Pure and Appl. Math. 138, Dekker, 1992, 217-226. | Zbl 0761.41036
[00004] [KS] M. I. Kadets and M. G. Snobar, Certain functionals on the Minkowski compactum, Mat. Zametki 10 (1971), 453-458 (in Russian); English transl.: Math. Notes 10 (1971), 694-696. | Zbl 0229.46018
[00005] [HK] H. Koenig, Projections onto symmetric spaces, Quaestiones Math. 18 (1995), 199-220.
[00006] [PS] E. D. Positsel'skiĭ, Projection constants of symmetric spaces, Mat. Zametki 15 (1974), 719-727 (in Russian); English transl.: Math. Notes 15 (1974), 430-435.
[00007] [RU] D. Rutovitz, Some parameters associated with finite-dimensional Banach spaces, J. London Math. Soc. 40 (1965), 241-255. | Zbl 0125.06402
[00008] [NT] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Wiley, New York, 1989. | Zbl 0721.46004
[00009] [WO] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. Press, 1991. | Zbl 0724.46012