On coerciveness in Besov spaces for abstract parabolic equations of higher order
Yamamoto, Yoshitaka
Studia Mathematica, Tome 133 (1999), p. 79-98 / Harvested from The Polish Digital Mathematics Library

We are concerned with a relation between parabolicity and coerciveness in Besov spaces for a higher order linear evolution equation in a Banach space. As proved in a preceding work, a higher order linear evolution equation enjoys coerciveness in Besov spaces under a certain parabolicity condition adopted and studied by several authors. We show that for a higher order linear evolution equation coerciveness in Besov spaces forces the parabolicity of the equation. We thus conclude that parabolicity and coerciveness in Besov spaces are equivalent.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216624
@article{bwmeta1.element.bwnjournal-article-smv134i1p79bwm,
     author = {Yoshitaka Yamamoto},
     title = {On coerciveness in Besov spaces for abstract parabolic equations of higher order},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {79-98},
     zbl = {0938.47032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i1p79bwm}
}
Yamamoto, Yoshitaka. On coerciveness in Besov spaces for abstract parabolic equations of higher order. Studia Mathematica, Tome 133 (1999) pp. 79-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i1p79bwm/

[00000] [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. | Zbl 0344.46071

[00001] [2] H. Brézis and L. E. Fraenkel, A function with prescribed initial derivatives in different Banach spaces, J. Funct. Anal. 29 (1978), 328-335. | Zbl 0388.46026

[00002] [3] P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer, Berlin, 1967. | Zbl 0164.43702

[00003] [4] G. Da Prato et P. Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl. 54 (1975), 305-387. | Zbl 0315.47009

[00004] [5] G. Da Prato and E. Sinestrari, Differential operators with non dense domain, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344. | Zbl 0652.34069

[00005] [6] G. Di Blasio, Linear parabolic evolution equations in Lp-spaces, Ann. Mat. 138 (1984), 55-104. | Zbl 0568.35047

[00006] [7] Yu. A. Dubinskiĭ, On some differential-operator equations of arbitrary order, Math. USSR-Sb. 19 (1973), 1-21.

[00007] [8] A. Favini and E. Obrecht, Conditions for parabolicity of second order abstract differential equations, Differential Integral Equations 4 (1991), 1005-1022. | Zbl 0735.34043

[00008] [9] A. Favini and H. Tanabe, On regularity of solutions to n-order differential equations of parabolic type in Banach spaces, Osaka J. Math. 31 (1994), 225-246. | Zbl 0818.34030

[00009] [10] P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures Appl. 45 (1966), 207-290. | Zbl 0173.15803

[00010] [11] P. Grisvard, Équations différentielles abstraites, Ann. Sci. École Norm. Sup. 2 (1969), 311-395. | Zbl 0193.43502

[00011] [12] J. Lagnese, On equations of evolution and parabolic equations of higher order in t, J. Math. Anal. Appl. 32 (1970), 15-37. | Zbl 0207.14002

[00012] [13] T. Muramatu, On Besov spaces of functions defined in general regions, Publ. R.I.M.S. Kyoto Univ. 6 (1970),//1971 515-543. | Zbl 0225.46036

[00013] [14] T. Muramatu, On Besov spaces and Sobolev spaces of generalized functions defined on a general region, ibid. 9 (1974), 325-396. | Zbl 0287.46046

[00014] [15] T. Muramatu, Besov spaces and analytic semigroups of linear operators, J. Math. Soc. Japan 42 (1990), 133-146. | Zbl 0713.46022

[00015] [16] E. Obrecht, Sul problema di Cauchy per le equazioni paraboliche astratte di ordine n, Rend. Sem. Mat. Univ. Padova 53 (1975), 231-256. | Zbl 0326.34076

[00016] [17] E. Obrecht, Evolution operators for higher order abstract parabolic equations, Czechoslovak Math. J. 36 (111) (1986), 210-222. | Zbl 0618.35054

[00017] [18] E. Obrecht, The Cauchy problem for time-dependent abstract parabolic equations of higher order, J. Math. Anal. Appl. 125 (1987), 508-530. | Zbl 0645.34052

[00018] [19] E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl. 107 (1985), 16-66. | Zbl 0589.47042

[00019] [20] P. E. Sobolevskiĭ, Coerciveness inequalities for abstract parabolic equations, Soviet Math. Dokl. 5 (1964), 894-897. | Zbl 0149.36001

[00020] [21] H. Tanabe, Equations of Evolution, Pitman, London, 1979.

[00021] [22] H. Tanabe, Volterra integro-differential equations of parabolic type of higher order in t, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 111-125. | Zbl 0628.45008

[00022] [23] H. Tanabe, On fundamental solutions of linear parabolic equations of higher order in time and associated Volterra equations, J. Differential Equations 73 (1988), 288-308. | Zbl 0673.35042

[00023] [24] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

[00024] [25] Y. Yamamoto, Remarks on coerciveness in Besov spaces for abstract parabolic equations, J. Math. Kyoto Univ. 34 (1994), 207-218. | Zbl 0811.35041

[00025] [26] Y. Yamamoto, Solutions in Besov spaces of a class of abstract parabolic equations of higher order in time, ibid. 38 (1998), 201-227.