Most expanding maps have no absolutely continuous invariant measure
Quas, Anthony
Studia Mathematica, Tome 133 (1999), p. 69-78 / Harvested from The Polish Digital Mathematics Library

We consider the topological category of various subsets of the set of expanding maps from a manifold to itself, and show in particular that a generic C1 expanding map of the circle has no absolutely continuous invariant probability measure. This is in contrast with the situation for C2 or C1+ε expanding maps, for which it is known that there is always a unique absolutely continuous invariant probability measure.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216623
@article{bwmeta1.element.bwnjournal-article-smv134i1p69bwm,
     author = {Anthony Quas},
     title = {Most expanding maps have no absolutely continuous invariant measure},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {69-78},
     zbl = {0942.37055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i1p69bwm}
}
Quas, Anthony. Most expanding maps have no absolutely continuous invariant measure. Studia Mathematica, Tome 133 (1999) pp. 69-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i1p69bwm/

[00000] [1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Amer. Math. Soc., Providence, 1997. | Zbl 0882.28013

[00001] [2] H. Bruin and J. Hawkins, Examples of expanding C1 maps having no σ-finite measure equivalent to Lebesgue, preprint, 1996. | Zbl 0936.37001

[00002] [3] P. Góra et B. Schmitt, Un exemple de transformation dilatante et C1 par morceaux de l’intervalle, sans probabilité absolument continue invariante, Ergodic Theory Dynam. Systems 9 (1989), 101-113. | Zbl 0672.58023

[00003] [4] J. M. Hawkins and C. E. Silva, Noninvertible transformations admitting no absolutely continuous σ-finite invariant measure, Proc. Amer. Math. Soc. 111 (1991), 455-463. | Zbl 0729.28012

[00004] [5] K. Krzyżewski, On expanding mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 23-24. | Zbl 0208.06903

[00005] [6] K. Krzyżewski, A remark on expanding mappings, Colloq. Math. 41 (1979), 291-295. | Zbl 0446.58009

[00006] [7] K. Krzyżewski and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83-92. | Zbl 0176.00901

[00007] [8] M. R. Palmer, W. Parry and P. Walters, Large sets of endomorphisms and of g-measures, in: The Structure of Attractors in Dynamical Systems, Lecture Notes in Math. 668, Springer, Berlin, 1978, 191-210.

[00008] [9] W. Parry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Astérisque 187-188 (1990). | Zbl 0726.58003

[00009] [10] A. N. Quas, Invariant densities for C1 maps, Studia Math. 120 (1996), 83-88. | Zbl 0858.58030

[00010] [11] P. Walters, Ruelle's operator theorem and g-measures, Trans. Amer. Math. Soc. 214 (1975), 375-387. | Zbl 0331.28013