We consider the topological category of various subsets of the set of expanding maps from a manifold to itself, and show in particular that a generic expanding map of the circle has no absolutely continuous invariant probability measure. This is in contrast with the situation for or expanding maps, for which it is known that there is always a unique absolutely continuous invariant probability measure.
@article{bwmeta1.element.bwnjournal-article-smv134i1p69bwm, author = {Anthony Quas}, title = {Most expanding maps have no absolutely continuous invariant measure}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {69-78}, zbl = {0942.37055}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i1p69bwm} }
Quas, Anthony. Most expanding maps have no absolutely continuous invariant measure. Studia Mathematica, Tome 133 (1999) pp. 69-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i1p69bwm/
[00000] [1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Amer. Math. Soc., Providence, 1997. | Zbl 0882.28013
[00001] [2] H. Bruin and J. Hawkins, Examples of expanding maps having no σ-finite measure equivalent to Lebesgue, preprint, 1996. | Zbl 0936.37001
[00002] [3] P. Góra et B. Schmitt, Un exemple de transformation dilatante et par morceaux de l’intervalle, sans probabilité absolument continue invariante, Ergodic Theory Dynam. Systems 9 (1989), 101-113. | Zbl 0672.58023
[00003] [4] J. M. Hawkins and C. E. Silva, Noninvertible transformations admitting no absolutely continuous σ-finite invariant measure, Proc. Amer. Math. Soc. 111 (1991), 455-463. | Zbl 0729.28012
[00004] [5] K. Krzyżewski, On expanding mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 23-24. | Zbl 0208.06903
[00005] [6] K. Krzyżewski, A remark on expanding mappings, Colloq. Math. 41 (1979), 291-295. | Zbl 0446.58009
[00006] [7] K. Krzyżewski and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83-92. | Zbl 0176.00901
[00007] [8] M. R. Palmer, W. Parry and P. Walters, Large sets of endomorphisms and of g-measures, in: The Structure of Attractors in Dynamical Systems, Lecture Notes in Math. 668, Springer, Berlin, 1978, 191-210.
[00008] [9] W. Parry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Astérisque 187-188 (1990). | Zbl 0726.58003
[00009] [10] A. N. Quas, Invariant densities for maps, Studia Math. 120 (1996), 83-88. | Zbl 0858.58030
[00010] [11] P. Walters, Ruelle's operator theorem and g-measures, Trans. Amer. Math. Soc. 214 (1975), 375-387. | Zbl 0331.28013