A sharp estimate for the Hardy-Littlewood maximal function
Grafakos, Loukas ; Montgomery-Smith, Stephen ; Motrunich, Olexei
Studia Mathematica, Tome 133 (1999), p. 57-67 / Harvested from The Polish Digital Mathematics Library

The best constant in the usual Lp norm inequality for the centered Hardy-Littlewood maximal function on 1 is obtained for the class of all “peak-shaped” functions. A function on the line is called peak-shaped if it is positive and convex except at one point. The techniques we use include variational methods.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216622
@article{bwmeta1.element.bwnjournal-article-smv134i1p57bwm,
     author = {Loukas Grafakos and Stephen Montgomery-Smith and Olexei Motrunich},
     title = {A sharp estimate for the Hardy-Littlewood maximal function},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {57-67},
     zbl = {0933.42010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i1p57bwm}
}
Grafakos, Loukas; Montgomery-Smith, Stephen; Motrunich, Olexei. A sharp estimate for the Hardy-Littlewood maximal function. Studia Mathematica, Tome 133 (1999) pp. 57-67. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i1p57bwm/

[00000] [Al] J. M. Aldaz, Remarks on the Hardy-Littlewood maximal function, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 1-9.

[00001] [Ba] J. Barrionuevo, personal comunication.

[00002] [Br] U. Brechtken-Manderscheid, Introduction to the Calculus of Variations, Chapman & Hall, London, 1991.

[00003] [CG] M. Christ and L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc. 123 (1995), 1687-1693. | Zbl 0830.42009

[00004] [DGS] R. Dror, S. Ganguli and R. Strichartz, A search for best constants in the Hardy-Littlewood maximal theorem, J. Fourier Anal. Appl. 2 (1996), 473-486. | Zbl 1055.42502

[00005] [GM] L. Grafakos and S. Montgomery-Smith, Best constants for uncentered maximal functions, Bull. London Math. Soc. 29 (1997), 60-64. | Zbl 0865.42020