Order bounded composition operators on the Hardy spaces and the Nevanlinna class
Jaoua, Nizar
Studia Mathematica, Tome 133 (1999), p. 35-55 / Harvested from The Polish Digital Mathematics Library

We study the order boundedness of composition operators induced by holomorphic self-maps of the open unit disc D. We consider these operators first on the Hardy spaces Hp 0 < p < ∞ and then on the Nevanlinna class N. Given a non-negative increasing function h on [0,∞[, a composition operator is said to be X,Lh-order bounded (we write (X,Lh)-ob) with X=Hp or X = N if its composition with the map f ↦ f*, where f* denotes the radial limit of f, is order bounded from X into Lh. We give a complete characterization and a family of examples in both cases. On the other hand, we show that the (N,log+L)-ob composition operators are exactly those which are Hilbert-Schmidt on H2. We also prove that the (N,Lq)-ob composition operators are exactly those which are compact from N into Hq.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216621
@article{bwmeta1.element.bwnjournal-article-smv134i1p35bwm,
     author = {Nizar Jaoua},
     title = {Order bounded composition operators on the Hardy spaces and the Nevanlinna class},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {35-55},
     zbl = {0951.47027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i1p35bwm}
}
Jaoua, Nizar. Order bounded composition operators on the Hardy spaces and the Nevanlinna class. Studia Mathematica, Tome 133 (1999) pp. 35-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i1p35bwm/

[00000] [1] J. S. Choa and H. O. Kim, Compact composition operators on the Nevanlinna class, Proc. Amer. Math. Soc. 125 (1997), 145-151. | Zbl 0860.47018

[00001] [2] P. L. Duren, Theory of Hp Spaces, Academic Press, 1970. | Zbl 0215.20203

[00002] [3] P. L. Duren, On the Bloch-Nevanlinna conjecture, Colloq. Math. 20 (1969), 295-297. | Zbl 0187.02601

[00003] [4] J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981. | Zbl 0469.30024

[00004] [5] H. Hunziker and H. Jarchow, Composition operators which improve integrability, Math. Nachr. 152 (1991), 83-99. | Zbl 0760.47015

[00005] [6] H. Jarchow, Some functional analytic properties of composition operators, Quaestiones Math. 18 (1995), 229-256. | Zbl 0828.47026

[00006] [7] N. N. Lebedev, Special Functions and their Applications, Academy of Sciences, USSR, 1972.

[00007] [8] E. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442-449. | Zbl 0161.34703

[00008] [9] J. W. Roberts and M. Stoll, Composition operators on F+, Studia Math. 57 (1976), 217-228.

[00009] [10] H. J. Schwartz, Composition operators on Hp, thesis, University of Toledo, 1969.

[00010] [11] J. H. Shapiro, The essential norm of a composition operator, Ann. of Math. 125 (1987), 375-404. | Zbl 0642.47027

[00011] [12] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, 1993. | Zbl 0791.30033

[00012] [13] J. H. Shapiro and A. L. Shields, Unusual topological proporties of the Nevanlinna class, Amer. J. Math. 97 (1975), 915-936. | Zbl 0323.30033

[00013] [14] J. H. Shapiro and P. D. Taylor, Compact, nuclear and Hilbert-Schmidt composition operators on H2, Indiana Univ. Math. J. 125 (1973), 471-496.

[00014] [15] J. A. Shoat and J. D. Tamarkin, The Problem of Moments, Amer. Math. Soc., 1943.

[00015] [16] N. Yanagihara, Multipliers and linear functionnals for the class N+, Trans. Amer. Math. Soc. 180 (1973), 449-461.

[00016] [17] N. Yanagihara, Mean growth and Taylor coefficients of some classes of functions, Ann. Polon. Math. 30 (1974), 37-48. | Zbl 0244.30032

[00017] [18] N. Yanagihara, The containing Fréchet space for the class N+, Duke Math. J. 40 (1973), 93-103.

[00018] [19] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990. | Zbl 0706.47019