Uniqueness of unconditional bases in c0-products
Casazza, P. ; Kalton, N.
Studia Mathematica, Tome 133 (1999), p. 275-294 / Harvested from The Polish Digital Mathematics Library

We give counterexamples to a conjecture of Bourgain, Casazza, Lindenstrauss and Tzafriri that if X has a unique unconditional basis (up to permutation) then so does c0(X). We also give some positive results including a simpler proof that c0(1) has a unique unconditional basis and a proof that c0(pnNn) has a unique unconditional basis when pn1, Nn+12Nn and (pn-pn+1)logNn remains bounded.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216619
@article{bwmeta1.element.bwnjournal-article-smv133i3p275bwm,
     author = {P. Casazza and N. Kalton},
     title = {Uniqueness of unconditional bases in $c\_0$-products},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {275-294},
     zbl = {0939.46010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv133i3p275bwm}
}
Casazza, P.; Kalton, N. Uniqueness of unconditional bases in $c_0$-products. Studia Mathematica, Tome 133 (1999) pp. 275-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv133i3p275bwm/

[00000] [1] B. Bollobas, Combinatorics, Cambridge Univ. Press, 1986.

[00001] [2] J. Bourgain, On the Dunford-Pettis property, Proc. Amer. Math. Soc. 81 (1981), 265-272. | Zbl 0463.46027

[00002] [3] J. Bourgain, P. G. Casazza, J. Lindenstrauss and L. Tzafriri, Banach spaces with a unique unconditional basis, up to a permutation, Mem. Amer. Math. Soc. 322 (1985). | Zbl 0575.46011

[00003] [4] P. G. Casazza and N. J. Kalton, Uniqueness of unconditional bases in Banach spaces, Israel J. Math. 103 (1998), 141-176. | Zbl 0939.46009

[00004] [5] P. G. Casazza and T. J. Schura, Tsirelson's Space, Lecture Notes in Math. 1363, Springer, 1989.

[00005] [6] I. S. Edelstein and P. Wojtaszczyk, On projections and unconditional bases in direct sums of Banach spaces, Studia Math. 56 (1976), 263-276. | Zbl 0362.46017

[00006] [7] T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94. | Zbl 0375.52002

[00007] [8] W. T. Gowers, A solution to Banach's hyperplane problem, Bull. London Math. Soc. 26 (1994), 523-530. | Zbl 0838.46011

[00008] [9] G. Köthe and O. Toeplitz, Lineare Räume mit unendlich vielen Koordinaten und Ringen unendlicher Matrizen, J. Reine Angew. Math. 171 (1934), 193-226. | Zbl 0009.25704

[00009] [10] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in Lp-spaces and their applications, Studia Math. 29 (1968), 315-349. | Zbl 0183.40501

[00010] [11] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977. | Zbl 0362.46013

[00011] [12] J. Lindenstrauss and M. Zippin, Banach spaces with a unique unconditional basis, J. Funct. Anal. 3 (1969), 115-125. | Zbl 0174.17201

[00012] [13] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite-Dimensional Spaces, Lecture Notes in Math. 1200, Springer, 1986. | Zbl 0606.46013

[00013] [14] B. S. Mityagin, Equivalence of bases in Hilbert scales, Studia Math. 37 (1970), 111-137 (in Russian).

[00014] [15] G. Pisier, The Volume of Convex Bodies and Geometry of Banach Spaces, Cambridge Tracts in Math. 94, Cambridge Univ. Press, 1989.

[00015] [16] P. Wojtaszczyk, Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces, II, Israel J. Math 97 (1997), 253-280. | Zbl 0874.46007

[00016] [17] M. Wojtowicz, On Cantor-Bernstein type theorems in Riesz spaces, Indag. Math. 91 (1988), 93-100. | Zbl 0654.46013