We give counterexamples to a conjecture of Bourgain, Casazza, Lindenstrauss and Tzafriri that if X has a unique unconditional basis (up to permutation) then so does . We also give some positive results including a simpler proof that has a unique unconditional basis and a proof that has a unique unconditional basis when , and remains bounded.
@article{bwmeta1.element.bwnjournal-article-smv133i3p275bwm, author = {P. Casazza and N. Kalton}, title = {Uniqueness of unconditional bases in $c\_0$-products}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {275-294}, zbl = {0939.46010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv133i3p275bwm} }
Casazza, P.; Kalton, N. Uniqueness of unconditional bases in $c_0$-products. Studia Mathematica, Tome 133 (1999) pp. 275-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv133i3p275bwm/
[00000] [1] B. Bollobas, Combinatorics, Cambridge Univ. Press, 1986.
[00001] [2] J. Bourgain, On the Dunford-Pettis property, Proc. Amer. Math. Soc. 81 (1981), 265-272. | Zbl 0463.46027
[00002] [3] J. Bourgain, P. G. Casazza, J. Lindenstrauss and L. Tzafriri, Banach spaces with a unique unconditional basis, up to a permutation, Mem. Amer. Math. Soc. 322 (1985). | Zbl 0575.46011
[00003] [4] P. G. Casazza and N. J. Kalton, Uniqueness of unconditional bases in Banach spaces, Israel J. Math. 103 (1998), 141-176. | Zbl 0939.46009
[00004] [5] P. G. Casazza and T. J. Schura, Tsirelson's Space, Lecture Notes in Math. 1363, Springer, 1989.
[00005] [6] I. S. Edelstein and P. Wojtaszczyk, On projections and unconditional bases in direct sums of Banach spaces, Studia Math. 56 (1976), 263-276. | Zbl 0362.46017
[00006] [7] T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94. | Zbl 0375.52002
[00007] [8] W. T. Gowers, A solution to Banach's hyperplane problem, Bull. London Math. Soc. 26 (1994), 523-530. | Zbl 0838.46011
[00008] [9] G. Köthe and O. Toeplitz, Lineare Räume mit unendlich vielen Koordinaten und Ringen unendlicher Matrizen, J. Reine Angew. Math. 171 (1934), 193-226. | Zbl 0009.25704
[00009] [10] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in -spaces and their applications, Studia Math. 29 (1968), 315-349. | Zbl 0183.40501
[00010] [11] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977. | Zbl 0362.46013
[00011] [12] J. Lindenstrauss and M. Zippin, Banach spaces with a unique unconditional basis, J. Funct. Anal. 3 (1969), 115-125. | Zbl 0174.17201
[00012] [13] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite-Dimensional Spaces, Lecture Notes in Math. 1200, Springer, 1986. | Zbl 0606.46013
[00013] [14] B. S. Mityagin, Equivalence of bases in Hilbert scales, Studia Math. 37 (1970), 111-137 (in Russian).
[00014] [15] G. Pisier, The Volume of Convex Bodies and Geometry of Banach Spaces, Cambridge Tracts in Math. 94, Cambridge Univ. Press, 1989.
[00015] [16] P. Wojtaszczyk, Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces, II, Israel J. Math 97 (1997), 253-280. | Zbl 0874.46007
[00016] [17] M. Wojtowicz, On Cantor-Bernstein type theorems in Riesz spaces, Indag. Math. 91 (1988), 93-100. | Zbl 0654.46013