Let X be a normed space and the group of all linear surjective isometries of X that are finite-dimensional perturbations of the identity. We prove that if acts transitively on the unit sphere then X must be an inner product space.
@article{bwmeta1.element.bwnjournal-article-smv133i3p257bwm, author = {F\'elix Cabello S\'anchez}, title = {A theorem on isotropic spaces}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {257-260}, zbl = {0921.46005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv133i3p257bwm} }
Cabello Sánchez, Félix. A theorem on isotropic spaces. Studia Mathematica, Tome 133 (1999) pp. 257-260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv133i3p257bwm/
[00000] [1] H. Auerbach, Sur les groupes linéaires bornés I, Studia Math. 4 (1934), 113-127. | Zbl 59.1093.05
[00001] [2] H. Auerbach, Sur une propriété caractéristique de l'ellipsoïde, ibid. 9 (1940), 17-22. | Zbl 0063.00135
[00002] [3] S. Banach, Théorie des opérations linéaires, Monograf. Mat. 1, Warszawa-Lwów, 1932. | Zbl 0005.20901
[00003] [4] F. Cabello Sánchez, Regards sur le problème des rotations de Mazur, Extracta Math. 12 (1997), 97-116.
[00004] [5] F. Cabello Sánchez, Maximal symmetric norms on Banach spaces, Proc. Roy. Irish Acad., to appear.
[00005] [6] P. Greim, J. E. Jamison and A. Kamińska, Almost transitivity of some function spaces, Math. Proc. Cambridge Philos. Soc. 116 (1994), 475-488. | Zbl 0835.46019
[00006] [7] S. Mazur, Quelques propriétés caractéristiques des espaces euclidiens, C. R. Acad. Sci. Paris 207 (1938), 761-764. | Zbl 64.0376.03
[00007] [8] S. Rolewicz, Metric Linear Spaces, Monograf. Mat. 56, PWN and D. Reidel, 1984.