If ϕ is an analytic self-mapping of the unit disc D and if is the Hardy-Hilbert space on D, the composition operator on is defined by . In this article, we consider which Toeplitz operators satisfy
@article{bwmeta1.element.bwnjournal-article-smv133i2p187bwm, author = {Bruce Cload}, title = {Toeplitz operators in the commutant of a composition operator}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {187-196}, zbl = {0924.47017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv133i2p187bwm} }
Cload, Bruce. Toeplitz operators in the commutant of a composition operator. Studia Mathematica, Tome 133 (1999) pp. 187-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv133i2p187bwm/
[00000] [1] D. F. Behan, Commuting analytic functions without fixed points, Proc. Amer. Math. Soc. 37 (1973), 114-120. | Zbl 0251.30009
[00001] [2] R. B. Burckel, Iterating analytic self-maps of discs, Amer. Math. Monthly 88 (1981), 396-407. | Zbl 0466.30001
[00002] [3] B. Cload, Generating the commutant of a composition operator, in: Contemp. Math. 213, Amer. Math. Soc., 1998, 11-15. | Zbl 0901.47017
[00003] [4] B. Cload, Composition operators: hyperinvariant subspaces quasi-normals and isometries, Proc. Amer. Math. Soc., to appear. | Zbl 0917.47027
[00004] [5] C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc. 239 (1978), 1-31. | Zbl 0391.47014
[00005] [6] C. C. Cowen, Commuting analytic functions, ibid. 265 (1981), 69-95.
[00006] [7] C. C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, 1995. | Zbl 0873.47017
[00007] [8] C. C. Cowen and B. MacCluer, Some problems on composition operators, in: Contemp. Math. 213, Amer. Math. Soc., 1998, 17-25.
[00008] [9] P. Duren, Theory of Spaces, Academic Press, 1970.
[00009] [10] M. H. Heins, A generalization of the Aumann-Carathéodory "Starrheitssatz", Duke Math. J. 8 (1941), 312-316. | Zbl 67.0283.02
[00010] [11] K. Hoffman, Banach Spaces of Analytic Functions, Dover, 1988. | Zbl 0734.46033
[00011] [12] P. Hurst, A model for the invertible composition operators on , Proc. Amer. Math. Soc. 124 (1996), 1847-1856. | Zbl 0857.47017
[00012] [13] E. A. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442-449. | Zbl 0161.34703
[00013] [14] E. A. Nordgren, P. Rosenthal and F. S. Wintrobe, Invertible composition operators on , J. Funct. Anal. 73 (1987), 324-344.
[00014] [15] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1987. | Zbl 0925.00005
[00015] [16] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, New York, 1993. | Zbl 0791.30033
[00016] [17] A. L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703-706. | Zbl 0129.29104
[00017] [18] A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, in: Indiana Univ. Math. Surveys 13, Amer. Math. Soc., Providence, 1974, 49-128.