We characterize the approximation property of Banach spaces and their dual spaces by the position of finite rank operators in the space of compact operators. In particular, we show that a Banach space E has the approximation property if and only if for all closed subspaces F of , the space ℱ(F,E) of finite rank operators from F to E has the n-intersection property in the corresponding space K(F,E) of compact operators for all n, or equivalently, ℱ(F,E) is an ideal in K(F,E).
@article{bwmeta1.element.bwnjournal-article-smv133i2p175bwm, author = {\AA svald Lima and Eve Oja}, title = {Ideals of finite rank operators, intersection properties of balls, and the approximation property}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {175-186}, zbl = {0930.46020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv133i2p175bwm} }
Lima, Åsvald; Oja, Eve. Ideals of finite rank operators, intersection properties of balls, and the approximation property. Studia Mathematica, Tome 133 (1999) pp. 175-186. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv133i2p175bwm/
[00000] [1] N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. | Zbl 0074.17802
[00001] [2] C.-M. Cho, The metric approximation property and intersection properties of balls, J. Korean Math. Soc. 31 (1994), 467-475. | Zbl 0824.46028
[00002] [3] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
[00003] [4] M. Feder and P. Saphar, Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), 38-49. | Zbl 0325.47028
[00004] [5] T. Figiel, Factorization of compact operators and applications to the approximation problem, Studia Math. 45 (1973), 191-210. | Zbl 0257.47017
[00005] [6] G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, ibid. 104 (1993), 13-59. | Zbl 0814.46012
[00006] [7] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
[00007] [8] P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993. | Zbl 0789.46011
[00008] [9] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. | Zbl 0466.46001
[00009] [10] W. B. Johnson, Factoring compact operators, Israel J. Math. 9 (1971), 337-345. | Zbl 0236.47045
[00010] [11] Å. Lima, Uniqueness of Hahn-Banach extensions and liftings of linear dependences, Math. Scand. 53 (1983), 97-113. | Zbl 0532.46003
[00011] [12] Å. Lima, The metric approximation property, norm-one projections and intersection properties of balls, Israel J. Math. 84 (1993), 451-475. | Zbl 0814.46016
[00012] [13] Å. Lima, Property (wM*) and the unconditional metric compact approximation property, Studia Math. 113 (1995), 249-263. | Zbl 0826.46013
[00013] [14] J. Lindenstrauss, On a problem of Nachbin concerning extension of operators, Israel J. Math. 1 (1963), 75-84. | Zbl 0145.39003
[00014] [15] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964). | Zbl 0141.12001
[00015] [16] J. Lindenstrauss, On projections with norm 1-an example, Proc. Amer. Math. Soc. 15 (1964), 403-406. | Zbl 0125.06601
[00016] [17] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977. | Zbl 0362.46013
[00017] [18] E. Oja and M. Põldvere, On subspaces of Banach spaces where every functional has a unique norm-preserving extension, Studia Math. 117 (1996), 289-306. | Zbl 0854.46014
[00018] [19] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer, Berlin, 1993. | Zbl 0921.46039
[00019] [20] W. M. Ruess and C. P. Stegall, Extreme points in duals of operator spaces, Math. Ann. 261 (1982), 535-546. | Zbl 0501.47015
[00020] [21] I. Singer, Bases in Banach Spaces II, Springer, Berlin, 1981.