Ideals of finite rank operators, intersection properties of balls, and the approximation property
Lima, Åsvald ; Oja, Eve
Studia Mathematica, Tome 133 (1999), p. 175-186 / Harvested from The Polish Digital Mathematics Library

We characterize the approximation property of Banach spaces and their dual spaces by the position of finite rank operators in the space of compact operators. In particular, we show that a Banach space E has the approximation property if and only if for all closed subspaces F of c0, the space ℱ(F,E) of finite rank operators from F to E has the n-intersection property in the corresponding space K(F,E) of compact operators for all n, or equivalently, ℱ(F,E) is an ideal in K(F,E).

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216612
@article{bwmeta1.element.bwnjournal-article-smv133i2p175bwm,
     author = {\AA svald Lima and Eve Oja},
     title = {Ideals of finite rank operators, intersection properties of balls, and the approximation property},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {175-186},
     zbl = {0930.46020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv133i2p175bwm}
}
Lima, Åsvald; Oja, Eve. Ideals of finite rank operators, intersection properties of balls, and the approximation property. Studia Mathematica, Tome 133 (1999) pp. 175-186. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv133i2p175bwm/

[00000] [1] N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. | Zbl 0074.17802

[00001] [2] C.-M. Cho, The metric approximation property and intersection properties of balls, J. Korean Math. Soc. 31 (1994), 467-475. | Zbl 0824.46028

[00002] [3] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.

[00003] [4] M. Feder and P. Saphar, Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), 38-49. | Zbl 0325.47028

[00004] [5] T. Figiel, Factorization of compact operators and applications to the approximation problem, Studia Math. 45 (1973), 191-210. | Zbl 0257.47017

[00005] [6] G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, ibid. 104 (1993), 13-59. | Zbl 0814.46012

[00006] [7] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).

[00007] [8] P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993. | Zbl 0789.46011

[00008] [9] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. | Zbl 0466.46001

[00009] [10] W. B. Johnson, Factoring compact operators, Israel J. Math. 9 (1971), 337-345. | Zbl 0236.47045

[00010] [11] Å. Lima, Uniqueness of Hahn-Banach extensions and liftings of linear dependences, Math. Scand. 53 (1983), 97-113. | Zbl 0532.46003

[00011] [12] Å. Lima, The metric approximation property, norm-one projections and intersection properties of balls, Israel J. Math. 84 (1993), 451-475. | Zbl 0814.46016

[00012] [13] Å. Lima, Property (wM*) and the unconditional metric compact approximation property, Studia Math. 113 (1995), 249-263. | Zbl 0826.46013

[00013] [14] J. Lindenstrauss, On a problem of Nachbin concerning extension of operators, Israel J. Math. 1 (1963), 75-84. | Zbl 0145.39003

[00014] [15] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964). | Zbl 0141.12001

[00015] [16] J. Lindenstrauss, On projections with norm 1-an example, Proc. Amer. Math. Soc. 15 (1964), 403-406. | Zbl 0125.06601

[00016] [17] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977. | Zbl 0362.46013

[00017] [18] E. Oja and M. Põldvere, On subspaces of Banach spaces where every functional has a unique norm-preserving extension, Studia Math. 117 (1996), 289-306. | Zbl 0854.46014

[00018] [19] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer, Berlin, 1993. | Zbl 0921.46039

[00019] [20] W. M. Ruess and C. P. Stegall, Extreme points in duals of operator spaces, Math. Ann. 261 (1982), 535-546. | Zbl 0501.47015

[00020] [21] I. Singer, Bases in Banach Spaces II, Springer, Berlin, 1981.