For every countable ordinal α, we construct an -predual which is isometric to a subspace of and isomorphic to a quotient of . However, is not isomorphic to a subspace of .
@article{bwmeta1.element.bwnjournal-article-smv133i2p131bwm,
author = {Ioannis Gasparis},
title = {A class of $l^1$-preduals which are isomorphic to quotients of $C($\omega$^$\omega$)$
},
journal = {Studia Mathematica},
volume = {133},
year = {1999},
pages = {131-143},
zbl = {0945.46004},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv133i2p131bwm}
}
Gasparis, Ioannis. A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$
. Studia Mathematica, Tome 133 (1999) pp. 131-143. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv133i2p131bwm/
[00000] [1] D. E. Alspach, A quotient of which is not isomorphic to a subspace of C(α), , Israel J. Math. 33 (1980), 49-60.
[00001] [2] D. E. Alspach, A -predual which is not isometric to a quotient of C(α), in: Contemp. Math. 144, Amer. Math. Soc., 1993, 9-14. | Zbl 0796.46004
[00002] [3] D. E. Alspach and Y. Benyamini, A geometrical property of C(K) spaces, Israel J. Math. 64 (1988), 179-194. | Zbl 0687.46013
[00003] [4] Y. Benyamini, An extension theorem for separable Banach spaces, ibid. 29 (1978), 24-30.
[00004] [5] C. Bessaga and A. Pełczyński, Spaces of continuous functions IV, Studia Math. 19 (1960), 53-62.
[00005] [6] C. Bessaga and A. Pełczyński, On extreme points in separable conjugate spaces, Israel J. Math. 4 (1966), 262-264. | Zbl 0145.16102
[00006] [7] I. Gasparis, Dissertation, The University of Texas, 1995.
[00007] [8] W. B. Johnson and M. Zippin, On subspaces of quotients of and , Israel J. Math. 13 (1972), 311-316.
[00008] [9] A. Lazar and J. Lindenstrauss, On Banach spaces whose duals are spaces and their representing matrices, Acta Math. 126 (1971), 165-194. | Zbl 0209.43201
[00009] [10] S. Mazurkiewicz et W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27. | Zbl 47.0176.01
[00010] [11] H. P. Rosenthal, On factors of C[0,1] with non-separable dual, Israel J. Math. 13 (1972), 361-378.