A class of l1-preduals which are isomorphic to quotients of C(ωω)
Gasparis, Ioannis
Studia Mathematica, Tome 133 (1999), p. 131-143 / Harvested from The Polish Digital Mathematics Library

For every countable ordinal α, we construct an l1-predual Xα which is isometric to a subspace of C(ωωωα+2) and isomorphic to a quotient of C(ωω). However, Xα is not isomorphic to a subspace of C(ωωα).

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216609
@article{bwmeta1.element.bwnjournal-article-smv133i2p131bwm,
     author = {Ioannis Gasparis},
     title = {A class of $l^1$-preduals which are isomorphic to quotients of $C($\omega$^$\omega$)$
            },
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {131-143},
     zbl = {0945.46004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv133i2p131bwm}
}
Gasparis, Ioannis. A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$
            . Studia Mathematica, Tome 133 (1999) pp. 131-143. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv133i2p131bwm/

[00000] [1] D. E. Alspach, A quotient of C(ωω) which is not isomorphic to a subspace of C(α), α<ω1, Israel J. Math. 33 (1980), 49-60.

[00001] [2] D. E. Alspach, A l1-predual which is not isometric to a quotient of C(α), in: Contemp. Math. 144, Amer. Math. Soc., 1993, 9-14. | Zbl 0796.46004

[00002] [3] D. E. Alspach and Y. Benyamini, A geometrical property of C(K) spaces, Israel J. Math. 64 (1988), 179-194. | Zbl 0687.46013

[00003] [4] Y. Benyamini, An extension theorem for separable Banach spaces, ibid. 29 (1978), 24-30.

[00004] [5] C. Bessaga and A. Pełczyński, Spaces of continuous functions IV, Studia Math. 19 (1960), 53-62.

[00005] [6] C. Bessaga and A. Pełczyński, On extreme points in separable conjugate spaces, Israel J. Math. 4 (1966), 262-264. | Zbl 0145.16102

[00006] [7] I. Gasparis, Dissertation, The University of Texas, 1995.

[00007] [8] W. B. Johnson and M. Zippin, On subspaces of quotients of (Gn)lp and (Gn)c0, Israel J. Math. 13 (1972), 311-316.

[00008] [9] A. Lazar and J. Lindenstrauss, On Banach spaces whose duals are L1 spaces and their representing matrices, Acta Math. 126 (1971), 165-194. | Zbl 0209.43201

[00009] [10] S. Mazurkiewicz et W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27. | Zbl 47.0176.01

[00010] [11] H. P. Rosenthal, On factors of C[0,1] with non-separable dual, Israel J. Math. 13 (1972), 361-378.