Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains
Bogdan, Krzysztof ; Byczkowski, Tomasz
Studia Mathematica, Tome 133 (1999), p. 53-92 / Harvested from The Polish Digital Mathematics Library

The purpose of the paper is to extend results of the potential theory of the classical Schrödinger operator to the α-stable case. To obtain this we analyze a weak version of the Schrödinger operator based on the fractional Laplacian and we prove the Conditional Gauge Theorem.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216605
@article{bwmeta1.element.bwnjournal-article-smv133i1p53bwm,
     author = {Krzysztof Bogdan and Tomasz Byczkowski},
     title = {Potential theory for the $\alpha$-stable Schr\"odinger operator on bounded Lipschitz domains},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {53-92},
     zbl = {0923.31003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv133i1p53bwm}
}
Bogdan, Krzysztof; Byczkowski, Tomasz. Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains. Studia Mathematica, Tome 133 (1999) pp. 53-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv133i1p53bwm/

[00000] [BC] R. F. Bass and M. Cranston, Exit times for symmetric stable processes in n, Ann. Probab. 11 (1983), 578-588. | Zbl 0516.60085

[00001] [BG] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Springer, New York, 1968. | Zbl 0169.49204

[00002] [BGR] R. M. Blumenthal, R. K. Getoor and D. B. Ray, On the distribution of first hits for the symmetric stable processes, Trans. Amer. Math. Soc. 99 (1961), 540-554. | Zbl 0118.13005

[00003] [B1] K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997), 43-80. | Zbl 0870.31009

[00004] [B2] K. Bogdan, Representation of α-harmonic functions in Lipschitz domains, Hiroshima Math. J. (1999), to appear.

[00005] [BB] K. Bogdan and T. Byczkowski, Probabilistic proof of the boundary Harnack principle for symmetric stable processes, Potential Anal. (1999), to appear.

[00006] [CMS] R. Carmona, W. C. Masters and B. Simon, Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions, J. Funct. Anal. 91 (1990), 117-142. | Zbl 0716.35006

[00007] [CS] Z. Q. Chen and R. Song, Intrinsic ultracontractivity and Conditional Gauge for symmetric stable processes, ibid. 150 (1997), 204-239. | Zbl 0886.60072

[00008] [ChZ] K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger's Equation, Springer, New York, 1995.

[00009] [CFZ] M. Cranston, E. Fabes and Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc. 307 (1988), 174-194. | Zbl 0652.60076

[00010] [D] E. B. Dynkin, Markov Processes, Vols. I, II, Academic Press, New York, 1965.

[00011] [Fe] C. Fefferman, The N-body problem in quantum mechanics, Comm. Pure Appl. Math. 39 (1986), S67-S109.

[00012] [Fo] G. B. Folland, Introduction to Partial Differential Equations, Princeton Univ. Press, Princeton, 1976.

[00013] [IW] N. Ikeda and S. Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ. 2 (1962), 79-95. | Zbl 0118.13401

[00014] [K] T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist. 17 (1997), 339-364. | Zbl 0903.60063

[00015] [La] N. S. Landkof, Foundations of Modern Potential Theory, Springer, New York, 1972. | Zbl 0253.31001

[00016] [Li] E. H. Lieb, The stability of matter: from atoms to stars, Bull. Amer. Math. Soc. 22 (1990), 1-49. | Zbl 0698.35135

[00017] [MS] K. Michalik and K. Samotij, Martin representation for α-harmonic functions, preprint, 1997.

[00018] [PS] S. C. Port and C. J. Stone, Infinitely divisible processes and their potential theory, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 2, 157-275, no. 4, 179-265. | Zbl 0195.47601

[00019] [R] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973. | Zbl 0253.46001

[00020] [S] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. | Zbl 0207.13501

[00021] [W] R. A. Weder, Spectral analysis of pseudodifferential operators, J. Funct. Anal. 20 (1975), 319-337. | Zbl 0317.47035

[00022] [Z] Z. Zhao, A probabilistic principle and generalized Schrödinger perturbation, J. Funct. Anal. 101 (1991), 162-176. | Zbl 0748.60069